
Numerical Linear Algebra
Solution of Exercise Problems

Yan Zeng

Version 0.1.1, last revised on 2009-09-01.

Abstract

This is a solution manual of the textbook Numerical Linear Algebra, by Lloyd N. Trefethen and David
Bau III (SIAM, 1997). This version omits Exercise 9.3, 10.4.

Contents
1 Matrix-Vector Multiplication 2

2 Orthogonal Vectors and Matrices 3

3 Norms 6

4 The Singular Value Decomposition 8

5 More on the SVD 11

6 Projectors 14

7 QR Factorization 15

8 Gram-Schmidt Orthogonalization 17

9 MATLAB 19

10 Householder Triangularization 22

11 Least Squares Problems 25

1

1 Matrix-Vector Multiplication
1.1. (a)

Proof. The basic principle applied here is the following: if A is a rectangular matrix, then any elementary
row operation on A may be carried out by multiplying A from the left by the corresponding elementary
matrix; any elementary column operation on A may be carried out by multiplying A from the right by the
corresponding elementary matrix. See, for example, Munkres [2] §2, Theorem 2.1 for details.

1 −1 0 0
0 1 0 0
0 −1 1 0
0 −1 0 1

1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1

2 0
0 0 0 1

B

1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0

0 0 0
1 0 0
0 1 0
0 0 1

(b)

Proof.

A =

1 −1 1

2 0
0 1 0 0
0 −1 1

2 0
0 −1 0 1

 , C =

0 0 0
2 0 0
0 1 1
0 0 0

 .

1.2. Not sure if I understand the problem correctly. Anyway, here’s the solution.
(a)

Proof. We have
f1
f2
f3
f4

 =

−k12 k12 0 0
0 −k23 k23 0
0 0 −k34 k34
0 0 0 0

x1

x2

x3

x4

−

k12l12
k23l23
k34l34

0

 .

(2)

Proof. The entries of K are spring constants. By Hooke’s law (force = spring constant × displacement), the
dimension of the entries of K is force

distance = mass
time2 .

(3)

Proof.
[

mass
time2

]4
.

(4)

Proof. K = 1000K ′ and det(K) = 1012 · det(K).

1.3.

2

Proof. We write Im×m and R−1 in the column form: Im×m = [e1, e2, · · · , em], R−1 = [a1, a2, · · · , am].
Suppose R = (rij) has the form

R =

r11 r12 · · · r1m
0 r22 · · · r2m
· · · · · · · · · · · ·
0 0 · · · rmm

 .

Then Im×m = R−1R can be written as

[e1, e2, · · · , em] = [a1, a2, · · · , am]

r11 r12 · · · r1m
0 r22 · · · r2m
· · · · · · · · · · · ·
0 0 · · · rmm

 .

Since R is nonsingular and det(R)=
∏m

i=1 rii, we conclude the diagonal entries rii are non-zero.
To show R−1 is necessarily upper-triangular, we work by induction. To begin with, we have e1 = r11a1.

So a1 = r−1
11 e1 has zero entries except the first one. For convenience, we denote by Cm(k) the column space

{v =

v1
v2
· · ·
vm

 ∈ Cm : vi = 0 for i > k}. Then Cm(1) ⊂ Cm(2) ⊂ · · · ⊂ Cm(m) = Cm and each Cm(k)

is a linear subspace of Cm. We have shown a1 ∈ Cm(1). Assume for any k ≤ i, ak ∈ Cm(k). Then by
Im×m = RR−1, we have

ei+1 =
m∑

k=1

akrk(i+1) =
i∑

k=1

akrk(i+1) + ai+1r(i+1)(i+1).

Therefore

ai+1 = r−1
(i+1)(i+1)

(
ei+1 −

m∑
k=1

akrk(i+1)

)
∈ Cm(i+ 1).

By induction, we have proved ak ∈ Cm(k) for 1 ≤ k ≤ m, which is equivalent to R−1 being upper-
triangular.

1.4. (a)

Proof. Denote by d the column vector

d1
d2
· · ·
d8

 and by c the column vector

c1
c2
· · ·
c8

. Let F be the matrix whose

(i,j)-entry is fj(i). Then the given condition can be rephrased as: for any d ∈ C8, we can find c ∈ C8 such
that Fc = d. This means range(F)=C8. By Theorem 1.3, null(F)={0}, which implies the mapping d 7→ c
is one-to-one.

(b)

Proof. Note Ad = c for any c ∈ C8 implies AFc = c for any c ∈ C8. So A−1 = F and the (i,j)-entry of A−1

is Fij = fj(i).

2 Orthogonal Vectors and Matrices
2.1.

Proof. If A is upper-triangular, then A∗ = A−1 is also upper-triangular (Exercise 1.3). So A must be
diagonal. The case of lower-triangular can be proved similarly.

3

2.2. (a)

Proof.

||x1 + x2||2 =
m∑
i=1

(x1i + x2i)
2 =

m∑
i=1

(x2
1i + x2

2i) + 2
m∑
i=1

x1ix2i = ||x1||2 + ||x2||2 + 2x∗
1x2 = ||x1||2 + ||x2||2,

where the last equality is due to orthogonality.

(b)

Proof. Assume ||
∑k

i=1 xi||2 =
∑k

i=1 ||xi||2 for any 1 ≤ k ≤ n, then

||
n+1∑
i=1

xi||2 = ||
n∑

i=1

xi||2 + ||xn+1||2 =
n∑

i=1

||xi||2 + ||xn+1||2 =
n+1∑
i=1

||xi||2.

By mathematical induction, we conclude the Pythagorean Theorem is true for any n ∈ N.

2.3. (a)

Proof. If Ax = λx for some x ∈ C \ {0}, then

λ||x||2 = λx∗x = x∗(λx) = x∗Ax = x∗A∗x = (Ax)∗x = (λx)∗x = λ∗x∗x = λ∗||x||2.

Since x ̸= 0, it must be the case that λ = λ∗.

(b)

Proof. Suppose Ax = λx and Ay = µy with λ ̸= µ. Then

λy∗x = y∗(Ax) = (y∗A)x = (y∗A∗)x = (Ay)∗x = (µy)∗x = µy∗x,

where we have used the result of part (a) to get µ∗ = µ. Since λ ̸= µ, we must have y∗x = 0, i.e. x and y
are orthogonal to each other.

2.4.

Proof. Suppose A is a unitary matrix, λ is an eigenvalue of A with x a corresponding eigenvector. Then

x∗x = x∗(A∗A)x = (Ax)∗(Ax) = (λx)∗(λx) = ||λ||2x∗x.

Since x ̸= 0, we must have ||λ|| = 1.

2.5.

Remark 1. The point of skew-Hermitian matrix is that any matrix A can be decomposed into the sum of a
Hermitian matrix 1

2 (A+A∗) and a skew-Hermitian matrix 1
2 (A−A∗). For more details on skew-Hermitian

matrix, see Lax [1], Chapter 8.

(a)

Proof. We note iS is Hermitian: (iS)∗ = i∗S∗ = −i(−S) = iS. Since λ is an eigenvalue of S if and only if
λi is an eigenvalue of iS, by Exercise 2.3 we conclude λ must be pure imaginary.

(b)

Proof. Suppose x is such that (I − S)x = 0. Then x = Sx and

x∗x = (Sx)∗x = x∗S∗x = −x∗Sx = −x∗x.

So x∗x = 0 and x must be zero. This shows null(I − S) = {0}. By Theorem 1.3, I − S is nonsingualr.

4

(c)

Proof. Define A = [(I − S)−1(I + S)]∗[(I − S)−1(I + S)]. Then (note for a nonsingular matrix U , (U−1)∗ =
(U∗)−1)

A = (I + S)∗(I − S)−∗(I − S)−1(I + S)

= (I + S∗)[(I − S)(I − S)∗]−1(I + S)

= (I − S)[(I − S)(I + S)]−1(I + S)

= (I − S)(I − S2)−1(I + S).

Therefore, A = A(I − S)(I − S)−1 = (I − S)[(I − S2)−1(I − S2)](I − S)−1 = (I − S)(I − S)−1 = I. This
shows the matrix Q is unitary.

2.6.

Proof. If u = 0, the problem is trivial. So without loss of generality, we assume u ̸= 0.
We first find the necessary and sufficient condition under which A is singular. For necessity, suppose

there exists x ∈ C \ {0} such that Ax = x + uv∗x = 0. Then x = −u(v∗x) is a scalar multiple of u. So we
can assume x = αu form some α ∈ C. Then the equation Ax = 0 beomces

αu+ u(v∗(αu)) = αu(1 + v∗u) = 0.

So we must have v∗u = −1. For sufficiency, assume v∗u = −1. Then for any α ∈ \{0}, A(αu) = αu +
uv∗(αu) = αu(1 + v∗u) = 0, which implies A is singular. Combined, we conclude A is singular if and only if
v∗u = −1. In this case, null(A) = {αu : α ∈ C}, the linear subspace spanned by u.

Now assume A is nonsingular. We shall find out A−1. Write A−1 in column form [x1, · · · , xm]. Then

AA−1 = (I + uv∗)[x1, · · · , xm] = [x1 + uv∗x1, · · · , xm + uv∗xm] = I = [e1, · · · , em].

So xi+uv∗xi = ei (1 ≤ i ≤ m) and A−1 has the general [e1−θ1u, · · · , em−θmu] = I−uθ∗, where θ =

 θ1· · ·
θm

.

Note
I = AA−1 = (I + uv∗)(I − uθ∗) = I − uθ∗ + uv∗ − uv∗uθ∗,

which implies 0 = −uθi+uvi−u(v∗u)θi (1 ≤ i ≤ m). Solving for θi gives θi = vi
1+v∗u . So A−1 = I− uv∗

1+v∗u .

2.7.

Proof. Inspired by Cramer’s rule, we can easily verify

H−1
k+1 = −1

2
(H−1

k)2
[
−Hk −Hk

−Hk Hk

]
=

1

2

[
H−1

k H−1
k

H−1
k −H−1

k

]
.

Assume Hk is a Hadamard matrix and denote by αk the corresponding constant factor. Then α0 = 1 and
we have

HT
k+1 =

[
HT

k HT
k

HT
k −HT

k

]
= αk

[
Hk H−1

k

H−1
k −H−1

k

]
= 2αkH

−1
k+1.

By induction, we can conclude Hk (k ∈ N) is a Hadamard matrix and the corresponding constant factor is
αk = 2k.

5

3 Norms
3.1.

Proof. To verify property (1) of (3.1), we note ||x||W = ||Wx|| ≥ 0 is obvious. Also ||x||W = ||Wx|| = 0 if and
only if Wx = 0, which is further equivalent to x = 0 by the nonsingularity of W . To verify property (2) of
(3.1), we note

||x+ y||W = ||W (x+ y)|| = ||Wx+Wy|| ≤ ||Wx||+ ||Wy|| = ||x||W + ||y||W .

Finally, ||αx||W = ||W (αx)|| = ||α(Wx)|| = |α|||Wx|| = |α|||x||W .

3.2.

Proof. If λ is an eigenvalue of A, we can find x ∈ Cm \ {0} such that Ax = λx. So

|λ| = ||Ax||
||x||

≤ sup
y∈Cm\{0}

||Ay||
||y||

= ||A||.

3.3. (a)

Proof. Assume |xi0 | = max1≤i≤m |xi|. Then ||x||∞ = |xi0 | ≤
√∑m

i=1 |xi|2 = ||x||2. For x = αei (α ∈ C, 1 ≤
i ≤ m), the equality holds.

(b)

Proof. Assume |xi0 | = max1≤i≤m |xi|. Then ||x||2 =
√∑m

i=1 |xi|2 ≤
√∑m

i=1 |xi0 |2 =
√
m|xi0 | =

√
m||x||∞.

For x = α

1
1
· · ·
1

 (α ∈ C), the equality holds.

(c)

Proof. For any x ∈ Cn \ {0}, by part (a) and (b),

||Ax||∞
||x||∞

≤ ||Ax||2
1√
n
||x||2

=
√
n
||Ax||2
||x||2

.

Take supremum on both sides, we have ||A||∞ ≤
√
n||A||2.

(d)

Proof. For any x ∈ Cn \ {0}, by part (a) and (b),

||Ax||2
||x||2

≤
√
m||Ax||∞
||x||∞

.

Take supremum on both sides, we have ||A||2 ≤
√
m||A||∞.

3.4. (a)

Proof. If A is multiplied from the right by identity matrix with the i-th column removed, the result is the
matrix obtained by removing the i-th column of A. Similarly, if A is multiplied from the left by the identity
matrix with the i-th row removed, the result is the matrix obtained by removing the i-th row of A. To
obtain B, we can multiply A from the left and the right by the appropriate identity matrices with certain
rows/columns removed.

6

(b)

Proof. By inequality (3.14), it suffices to prove any matrix obtained by removing a column or a row from an
identity matrix has p-norm less than or equal to 1. This is easy to see by straightforward computation and
we omit the details.

3.5.

Proof. Assume u ∈ Cm and v ∈ Cn. If E = uv∗, for any x ∈ Cn \ {0},

||Ex||2
||x||2

=
||uv∗x||2
||x||2

=
|v∗x|||u||2

||x||2
≤ ||u||2||v||2,

where the last inequality is by Cauchy-Schwarz inequality. This shows ||E||2 ≤ ||u||2||v||2. By letting x = v in
the above reasoning, we can show the equality holds, i.e. ||E||2 = ||u||2||v||2.

Moreover, we note Eij = uivj . Therefore

||E||F =

√√√√ m∑
i=1

n∑
j=1

|Eij |2 =

√√√√ m∑
i=1

n∑
j=1

|ui|2|vj |2 =

√√√√(
m∑
i=1

|ui|2)(
n∑

j=1

|vj |2) = ||u||F ||v||F .

3.6. (a)

Proof. ||x||′ ≥ 0 is straightforward. Note ||x||′ ≥ |(x
||x||)

∗x| = ||x||. So ||x||′ = 0 if and only if x = 0. Also,

||x1 + x2||′ = sup
||y||=1

|y∗(x1 + x2)| ≤ sup
||y||=1

(|y∗x1|+ |y∗x2|) ≤ sup
||y||=1

|y∗x1|+ sup
||y||=1

|y∗x2| = ||x1||′ + ||x2||′.

Finally, for any α ∈ C, ||αx||′ = sup||y||=1 |y∗(αx)| = sup||y||=1 |α||y∗x| = |α|||x||′.

(b)

Proof. We follow the hint. For the given x, we can find a nonzero z0 ∈ Cm such that |z∗0x| = ||z0||′||x||. Define
z = eiθz0/||z0||′, where θ = arg(z0x). Then ||z||′ = 1 and

z∗x = e−iθ z∗0
||z0||′

x =
|z∗0x|
||z0||′

= ||x|| = 1.

Therefore, Bx = (yz∗)x = y(z∗x) = y. Furthermore, we note

||B|| = sup
||w||=1

||Bw|| = sup
||w||=1

||yz∗w|| = sup
||w||=1

|z∗w|||y|| = sup
||w||=1

|w∗z| = ||z||′ = 1.

Combined, we conclude for the above defined z∗ and B = yz∗, we have Bx = y and ||B|| = 1.

Remark 2. Note the desired properties of B, Bx = y and ||B|| = 1, are equivalent to (a) z∗x = 1 = ||x||;
(b) ||z||′ = 1. This immediately reminds us of the following well-known corollary of Han-Banach Theorem:
Given an element x in a normed linear space X, there exists a continuous linear functional l on X, such

that l(x) = ||x|| and ||l|| = 1 (Yosida [3], page 108). Note l(x) = l(
∑m

i=1 xiei) = [l(e1), · · · , l(em)]

x1

· · ·
xm

. We

can therefore define z such that z∗ = [l(e1), · · · , l(em)]. Then l(w) = z∗w for any w ∈ Cm (in particular,
z∗x = l(x) = ||x||). Consequently, ||z||′ = ||l|| = 1. This proves the hint.

7

4 The Singular Value Decomposition
Remark 3. In the proof of Theorem 4.1, the part on uniqueness is a bit confusing, esp. the following
sentence: “Since ||A||2 = σ1, ||Av2||2 ≤ σ1; but this must be an equality, for otherwise, since w = v1c + v2s
for some constants c and s with |c|2 + |s|2 = 1, we would have ||Aw||2 < σ1.”

I don’t see why “we would have ||Aw||2 < σ1.” An alternative proof for the uniqueness goes as follows:
The uniqueness of the singular values {σj} are given by the observation that {σ2

j } are eigenvalues of AA∗ or
A∗A. Note {uj} are eigenvectors of AA∗, with σ2

j ’s the corresponding eigenvalues. So when σj’s are distinct,
the eigenvalues of AA∗ are also distinct, and the eigenspace of each σ2

j (for AA∗) is of dimension one. Due
to normalization, each uj is unique up to a complex sign. The result for {vj} can be proven similarly.

4.1. To find the SVD of a matrix A, we note that if A = UΣV ∗ is the SVD of A, then AA∗ = U(ΣΣ∗)U∗,
or equivalently, (AA∗)U = U(ΣΣ∗). Writing U in its column form [u1, u2, · · · , um], the equation becomes

(AA∗)[u1, u2, · · · , um] =

{
[σ2

1u1, σ
2
2u2, · · · , σ2

mum] if m ≤ n

[σ2
1u1, · · · , σ2

nun, 0, · · · , 0] if m > n.

This shows for p = min{m,n}, σ2
1 , σ2

2 , · · · , σ2
p are eigenvalues of AA∗ and u1, u2, · · · , up are the corresponding

eigenvectors. This gives us a way to find the singular values and U : if m ≤ n, U consists of the eigenvectors
of σ2

1 , σ2
2 , · · · , σ2

m; if m > n, the first n columns of U are eigenvectors of σ2
1 , σ2

2 , · · · , σ2
n and the last m− n

columns of U can be chosen from null(AA∗) so that U becomes unitary. If A is not of full rank, then p needs
to be replaced by rank(A) in the above algorithm.

A similar algorithm for V can be found by noting (A∗A)V = V (ΣΣ∗). Note ΣΣ∗ and Σ∗Σ have the same
nonzero eigenvalues. we don’t have to recalculate the eigenvalues. In practice, various tricks often directly
yield the SVD without resorting to the above method.

The solution below has been verified by Mathematica.1

(a)

Proof. U = I2×2, Σ =

[
3 0
0 2

]
, V =

[
1 0
0 −1

]
.

(b)

Proof. U =

[
0 1
1 0

]
, Σ =

[
3 0
0 2

]
, V =

[
0 1
1 0

]
.

(c)

Proof. U = I3×3, Σ =

2 0
0 0
0 0

, V =

[
0 1
1 0

]
.

(d)

Proof. U = I2×2, Σ =

[√
2 0
0 0

]
, V =

√
2
2

[
1 −1
1 1

]
.

(e)

Proof. U =
√
2
2

[
1 −1
1 1

]
, Σ =

[
2 0
0 0

]
, V =

√
2
2

[
1 −1
1 1

]
.

4.2.
1Example: {u,w, v} = SingularValueDecomposition[{{1, 2}, {1, 2}}].

8

Proof. Suppose A =

a11 a12 · · · a1n
· · · · · · · · · · · ·
am1 am2 · · · amn

. Then B =

am1 am−1,1 · · · a11
· · · · · · · · · · · ·
amn am−1,n · · · a1n

. We can obtain from

B the transpose AT of A by swapping columns of B. Therefore, the question asked by the problem is reduced
to the following two sub-questions: 1) Does a matrix and its transpose have the same singular values? 2)
If we multiply a matrix by a unitary matrix, does the resulted matrix have the same singular values as the
original one?

In view of the structure of SVD and the uniqueness of singular values, we can say yes to both questions.
Hence A and B have the same singular values.

4.3.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
On pre−image plane

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
On image plane

Proof. We have the following MATLAB program.

function svd_plot(A)

%SVD_PLOT find the SVD of a real 2-by-2 matrix A. It then
% plots the right singular vectors in the unit circle on
% the pre-image plane, as well as the scaled left singular
% vectors in the appropriate ellipse on the image plane.
%
% Exercise problem 4.3 of [1].
%
% [1]
% Lloyd N. Trefethen and David Bau III. Numerical linear algebra.
% SIAM, 1997.
%
% Z.Y., 09/19/2009.

t=0:0.01:(2*pi);

% Create the unit circe on the pre-image plane.
x1 = cos(t); y1 = sin(t);

% Create the ellipse on the image plane.
w = A*[x1; y1]; x2 = w(1,:); y2 = w(2,:);

% Obtain the SVD of A
[U, S, V] = svd(A);

% Create the right and left singular vectors

9

v1 = V(:,1); v2 = V(:,2); % right singular vectors
u1 = U(:,1); u2 = U(:,2); % left singular vectors
w1 = S(1,1)*u1; w2 = S(2,2)*u2; % scaled left singular vectors

% Plot the unit circle and the right singular vectors on pre-image plane.
figure(1);
axis([-1.2 1.2 -1.2 1.2]);
plot(x1, y1);
hold on;
line_plot(v1, 'b');
hold on;
line_plot(v2, 'r');
grid on;
title('On pre-image plane');

% Plot the ellipse and the scaled left signualr vectors on image plane.
figure(2);
axis([-3 3 -3 3]);
plot(x2, y2);
hold on;
line_plot(w1,'b');
hold on;
line_plot(w2, 'r');
grid on;
title('On image plane');

end % svd_plot

%%%%%%%%%%%%%%%% Nested function %%%%%%%%%%%%%%%%%%%
function line_plot(v, color)

%LINE_PLOT plots the line segment between the origin and the
% vector V on the 2-dimensional plane.
%
% Example: line_plot([1 1], 'r').
%
% Z.Y., 09/19/2009.

t = 0:0.01:1; x = v(1)*t; y = v(2)*t; plot(x, y, color);

end % line_plot

4.4.

Proof. Suppose A has SVD U1Σ1V
∗
1 and B has SVD U2Σ2V

∗
2 .

If A and B are unitarily equivalent, there exists a unitary matrix Q, such that A = QBQ∗. Then
A = Q(U2Σ2V

∗
2)Q

∗ = (QU2)Σ2(QV2)
∗. So (QU2)Σ2(QV2)

∗ is an SVD of A. By the uniqueness of singular
values, Σ2 = Σ1. In other words, A and B have the same singular values.

The converse is not necessarily true. As a counter example, note in Problem 4.1 (d), if we can let

A =

[
1 1
0 0

]
and B =

[√
2 0
0 0

]
, then A and B have the same singular values. But they are not unitarily

equivalent: otherwise A would be symmetric, which is clearly not true.

10

4.5.

Proof. We give two proofs.
For the first proof, we can examine the proof of Theorem 4.1 and see that if we replace Cm with Rm

everywhere, the same proof-by-induction works for real A. So when A is real, it has a real SVD.
For the second proof, we note A∗A is now real and symmetric. So it has a complete set of orthogonal (i.e.

real and orthonormal) eigenvectors: v1, v2, · · · , vn. Define V = [v1, · · · , vn] and denote by λi the eigenvalue
corresponding to vi (i = 1, · · · , n). Since A∗A is nonnegative, all the eigenvalues are nonnegative. Without
loss of generality, we assume λ1 ≥ λ2 ≥ · · · ≥ λn. Let r be the largest index such that λr > 0. Then
λr+1 = · · · = λn = 0. Moreover, we note null(A∗A) = null(A), since

x ∈ null(A∗A) =⇒ A∗Ax = 0 =⇒ (Ax)∗(Ax) = x∗A∗Ax = 0 =⇒ Ax = 0 =⇒ x ∈ null(A).

Coming back to Problem 4.5, we define σi =
√
λi and ui =

Avi
σi

(i = 1, · · · , r). Then {u1, · · · , ur} is an
orthogonal set of vectors:

u∗
i uj =

(Avi)
∗(Avj)

σiσj
=

v∗i (A
∗A)vj√
λiλj

=
λjv

∗
i vj√

λiλj

= δij .

We can expand the set {u1, · · · , ur} to be an orthogonal basis for Rm: {u1, · · · , ur, ur+1, · · · , um}. Define
U = [u1, · · · , um]. We check U∗AV is a diagonal matrix (recall null(A∗A) = null(A)):

U∗AV =

u∗
1

u∗
2

· · ·
u∗
m

A[v1, · · · , vn] = (u∗
iAvj), and u∗

iAvj =

{
0 if j > r

σiδij if j ≤ r.

This shows U∗AV is a (rectangular) diagonal matrix Σ. So A has a real SVD A = UΣV ∗.

Remark 4. The second proof is actually an existence proof of SVD when A is real. It relies on the
diagonalization result of real symmetric matrices.

5 More on the SVD
5.1.

Proof. We note

AA∗ =

[
1 2
0 2

] [
1 0
2 2

]
=

[
5 4
4 4

]
, det(λI −AA∗) = det

[
λ− 5 −4
−4 λ− 4

]
= λ2 − 9λ+ 4.

So the two eigenvalues of AA∗ are λ1,2 = 9±
√
65

2 . Therefore the largest and smallest singular values

of A are, respectively, σmax(A) =
(

9+
√
65

2

)1/2
≈ 2.920809626481889 and σmin(A) =

(
9−

√
65

2

)1/2
≈

0.684741648982100.

5.2.

Proof. Suppose A has SVD UΣV ∗. For any ε > 0, define Aε = U(Σ + εIm×n)V
∗, where Iij = δij . Since

all the diagonal elements of Σ is nonnegative, all the diagonal elements of (Σ + εIm×n) are positive. Since
multiplication by unitary matrices preserves the rank of a matrix, Aε is of full rank. By Theorem 5.3,

||A−Aε||2 = ||U(εIm×n)V
∗||2 = ε.

Therefore limε→0 ||A − Aε||2 = 0 with Aε of full rank. This proves the set of full-rank matrices is a dense
subset of Cm×n.

11

5.3. (a)

Proof. We will derive the expression U from the equation AAT = UΣΣUT . First of all, we note

AAT =

[
125 75
75 125

]
= 25

[
5 3
3 5

]

The characteristic polynomial of
[
5 3
3 5

]
is

det
([

5− λ 3
3 5− λ

])
= λ2 − 10λ+ 16 = (λ− 8)(λ− 2).

So the eigenvalues of AAT are 8 · 25 = 200 and 2 · 25 = 50. This implies the singular values of A are 10
√
2

and 5
√
2. Solving the equation [

5 3
3 5

]
U = U

[
8 0
0 2

]
gives us the general expression of U :

U =
1√
2

[
a b
a −b

]
,

where a, b ∈ {1,−1}. Then

V = ATUΣ−1 =

[
−2 −10
11 5

]
· 1√

2

[
a b
a −b

]
·

[
1

10
√
2

0

0 1
5
√
2

]
=

[
− 3

5a
4
5b

4
5a

3
5b

]
.

To let U and V have minimal number of minus signs, we should take a = b = 1.

(b)

Proof. From our calculation in part (a), the singular values of A are 10
√
2 and 5

√
2. The right singular

vectors are ±
[
−3/5
4/5

]
and ±

[
4/5
3/5

]
. The left singular vectors are ±

[
1/
√
2

1/
√
2

]
and ±

[
1/

√
2

−1/
√
2

]
. The unit ball

in R2 and its image under A, together with the singular vectors are shown in the following graph, plotted
by the MATLAB program we used for Exercise Problem 4.3. 4.3.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
On pre−image plane

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15
On image plane

(c)

Proof. By Theorem 5.3, ||A||2 = 10
√
2, ||A||F =

√
200 + 50 = 5

√
10. By Example 3.3, ||A||1 = 16. By Example

3.4, ||A||∞ = 15.

(d)

12

Proof. Since A = UΣV T and U , V are unitary,

A−1 = (UΣV T)−1 = V Σ−1UT =

[
−3

5
4
5

4
5

3
5

] [1
10

√
2

0

0 1
5
√
2

]
1√
2

[
1 1
1 −1

]
=

1

100

[
5 −11
10 −2

]
.

(e)

Proof. The characteristic polynomial of A is

det
[
−2− λ 11
−10 5− λ

]
= λ2 − 3λ+ 100.

So the eigenvalues of A are λ1,2 = (3±
√
391i)/2.

(f)

Proof. We note detA = −2 · 5− 11 · (−10) = 100. λ1λ2 = 1
4 (9 + 391) = 100. σ1σ2 = 10

√
2 · 5

√
2 = 100.

(g)

Proof. By change-of-variable formula, the area of the llipsoid is det(A) = 100.

5.4.

Proof. We note [
0 A∗

A 0

]
=

[
0 V Σ∗U∗

UΣV ∗ 0

]
=

[
0 Im×m

Im×m 0

] [
UΣV ∗ 0

0 V Σ∗U∗

]
=

[
0 Im×m

Im×m 0

] [
U 0
0 V

] [
Σ 0
0 Σ∗

] [
V ∗ 0
0 U∗

]
.

The inverse of
[

0 Im×m

Im×m 0

]
is itself and the inverse of

[
U 0
0 V

]
is
[
U∗ 0
0 V ∗

]
. So the inverse of

[
0 Im×m

Im×m 0

] [
U 0
0 V

]

is
[
U∗ 0
0 V ∗

] [
0 Im×m

Im×m 0

]
. Note

[
V ∗ 0
0 U∗

]
=

[
0 Im×m

Im×m 0

] [
U∗ 0
0 V ∗

] [
0 Im×m

Im×m 0

]
.

Therefore, we have[
0 A∗

A 0

]
=

([
0 Im×m

Im×m 0

] [
U 0
0 V

])([
Σ 0
0 Σ∗

] [
0 Im×m

Im×m 0

])([
0 Im×m

Im×m 0

] [
U 0
0 V

])−1

=

([
0 Im×m

Im×m 0

] [
U 0
0 V

])[
0 Σ
Σ∗ 0

]([
0 Im×m

Im×m 0

] [
U 0
0 V

])−1

.

Note Σ is a diagonal matrix with nonnegative diagonal elements, we must have Σ = Σ∗. It’s easy to see[
0 Σ
Σ 0

] [
Im×m Im×m

Im×m −Im×m

]
=

[
Im×m Im×m

Im×m −Im×m

] [
Σ 0
0 −Σ

]
,

[
Im×m Im×m

Im×m −Im×m

] [
Im×m Im×m

Im×m −Im×m

]
= 2I2m×2m.

13

So the formula [
0 Σ
Σ 0

]
=

1√
2

[
Im×m Im×m

Im×m −Im×m

]
·
[
Σ 0
0 −Σ

]
· 1√

2

[
Im×m Im×m

Im×m −Im×m

]
gives the eigenvalue decomposition of

[
0 Σ
Σ 0

]
. Combined, if we set

X =

[
0 Im×m

Im×m 0

] [
U 0
0 V

]
· 1√

2

[
Im×m Im×m

Im×m −Im×m

]
,

then X

[
Σ 0
0 −Σ

]
X−1 gives the eigenvalue decomposition of

[
0 A∗

A 0

]
.

6 Projectors
6.1.

Proof. Algebraically, we have by Theorem 6.1 (I − 2P)∗ = I∗ − 2P ∗ = I − 2P . So

(I − 2P)∗(I − 2P) = [(I − P)− P]2 = (I − P)2 − (I − P)P − P (I − P) + P 2 = I − P + P = I,

which shows I − 2P is unitary.

6.2.

Proof. It’s easy to see F 2 = I. So E2 = 1
4 (I + 2F + F 2) = I+F

2 = E. This shows E is a projector. Note F
has the matrix representation

F =

0 0 · · · 0 1
0 0 · · · 1 0
· · · · · · · · · · · · · · ·
0 1 · · · 0 0
1 0 · · · 0 0

So F ∗ = F and consequently E∗ = E. By Theorem (6.1), E is an orthogonal projector. The matrix
representation of E is

E =
1

2

1 0 · · · 0 1
0 1 · · · 1 0
· · · · · · · · · · · · · · ·
· · · · · · 2 · · · · · ·
· · · · · · · · · · · · · · ·
0 1 · · · 1 0
1 0 · · · 0 1

6.3.

Proof. We suppose the SVD of A is A = UΣV ∗. Then A is of full rank if and only if Σ is of full rank. Since
A∗A = V Σ∗ΣV ∗, we can easily see A∗A is nonsingular if and only if Σ is of full rank. Therefore, A∗A is
nonsingular if and only if A has full rank.

An alternative proof: If A∗A is singular, there exists x ̸= 0 such that A∗Ax = 0, which implies ||Ax||22 =
x∗A∗Ax = 0. So A is not of full rank. Conversely, if A is not of full rank, there must exist x ̸= 0 such that
Ax = 0. So A∗Ax = 0, which implies A∗A is singular. This argument appears in the proof of Theorem 11.1
(pp. 81).

6.4. (a)

14

Proof. range(A) is the column space of A, which has an orthonormal basis a1 =

1/
√
2

0

1/
√
2

 and a2 =

0
1
0

.

So the orthogonal projector P onto range(A) can be written as Px = a∗1xa1 + a∗2xa2 = a1a
∗
1x + a2a

∗
2x =

(a1, a2)

(
a∗1
a∗2

)
x = AA∗x, for any x ∈ C3. Therefore, P = AA∗ =

1/2 0 1/2
0 1 0
1/2 0 1/2

 (the derivation so

far is just the discussion after formula (6.7)). Consequently, the image under P of the vector (1, 2, 3)∗ is
(2, 2, 2)∗.

(b)

Proof. By formula (6.13),

P = B(B∗B)−1B∗ =
1

6

5 2 1
2 2 −2
1 −2 5

 .

Accordingly, the image under P of the vector (1, 2, 3)∗ is (2, 0, 2)∗.

6.5.

Proof. For any v ∈ range(P), we have Pv = v. So ||P ||2 = maxx∈Cm\{0}
||Px||2
||x||2 ≥ 1. Suppose the SVD of P

is UΣV ∗. Then for any x ∈ Cm, we have

||Px||22 = x∗P ∗Px = x∗V Σ∗U∗UΣV ∗x = x∗V Σ2V ∗x.

Therefore
||P ||2 = max

x∈Cm\{0}

||Px||2
||x||2

= max
x∈Cm\{0}

||ΣV ∗x||2
||V ∗x||2

= max
x∈Cm\{0}

||Σx||2
||x||2

= ||Σ||2.

Therefore, ||P ||2 = 1 ⇐⇒ ||Σ||2 = 1 ⇐⇒ Σ = I. But P 2 = UΣV ∗UΣV ∗ = P = UΣV ∗, which is equivalent to
V ∗UΣ = I. So Σ = I ⇐⇒ U = V . This is equivalent to P being an orthogonal projector.

7 QR Factorization
7.1. (a)

Proof. We note the columns of A are already orthogonal, so a reduced QR factorization and a full QR
factorization can be obtained by normalizing the columns of A

A =

1 0
0 1
1 0

 =

 1√
2

0

0 1
1√
2

0

(√2 0
0 1

)
=

 1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2

√
2 0
0 1
0 0

(b)

Proof. We follow the Gram-Schmidt orthogonalization to produce the QR factorization of B = (b1, b2). We
note

(b1, b2) = (q1, q2)

(
r11 r12
0 r22

)

So r11 = ||b1||2 =
√
2 and q1 = b1/||b1||2 = (1/

√
2, 0, 1/

√
2)T . r12 = q∗1b2 = (1/

√
2, 0, 1/

√
2)

2
1
0

 =
√
2, so

b2 − r12q1 =

2
1
0

−
√
2

1/
√
2

0

1/
√
2

 =

 1
1
−1

15

and r22 =
√
3. Consequently, the reduced QR factorization of B is

B =

1/
√
2 1/

√
3

0 1/
√
3

1/
√
2 −1/

√
3

(√2
√
2

0
√
3

)
.

To find out the full QR factorization of B, we can set (see, for example, Lax [1], Chapter 7, Exercise 20 (vii))

q3 = q1 × q2 =

−1/
√
6

2/
√
6

1/
√
6

 .

Then

B =

1/
√
2 1/

√
3 −1/

√
6

0 1/
√
3 2/

√
6

1/
√
2 −1/

√
3 1/

√
6

√
2

√
2

0
√
3

0 0

 .

7.2.

Proof. In the matrix R̂, we have rij = 0 if i > j or i ≤ j but i and j are not simultaneously even or odd.

7.3.

Proof. If A is not invertible, detA = 0 and we have nothing to prove. So without loss of generality, we as-
sume A is of full rank. Let A = QR be the QR factorization of A, then |detA| = |detQ ·detR| = |

∏m
j=1 rjj |.

According to the Gram-Schmidt orthogonalization, rij = q∗i aj(i ̸= j) and |rjj | = ||aj −
∑j−1

i=1 rijqi||2. There-
fore

|rjj |2 = ||aj −
j−1∑
i=1

rijqi||22 = (a∗j −
j−1∑
i=1

rijq
∗
i)(aj −

j−1∑
i=1

rijqi) = ||aj ||22 − 2

j−1∑
i=1

r2ij +

j−1∑
i=1

r2ij ≤ ||aj ||22.

This implies | detA| = |
∏m

j=1 rjj | ≤
∏m

j=1 ||aj ||2. The geometric interpretation of this inequality for m =
2 is that the area of a parallelepiped is at most the product the lengths of its two neighboring sides,
where the equality holds if and only if its sides are orthogonal to each other. Higher dimension has similar
interpretation.

Remark 5. For an alternative proof, see Lax [1], Chapter 10, Theorem 11.

7.4.

Proof. P as the intersection of P (1) and P (2) is a straight line. So P is orthogonal to both x(1) × y(1) and
x(2)× y(2). In the full QR factorization of the 3× 2 matrix (x(1), y(1)), the third column q

(1)
3 of the Q matrix

is a scalar multiple of x(1) × y(1); in the full QR factorization of the 3 × 2 matrix (x(2), y(2)), the third
column q

(2)
3 of the Q matrix is a scalar multiple of x(2) × y(2). Then a nonzero vector v ∈ P can be chosen

as q
(1)
3 × q

(2)
3 , which is the third column of the Q matrix in the full QR factorization of the 3 × 2 matrix

(q
(1)
3 , q

(2)
3). Finding v is thus reduced to the computation of QR factorization of three 3× 2 matrices.

7.5. (a)

Proof. Suppose A = (a1, a2, · · · , an), Q̂ = (q1, q2, · · · , qn) and

Q̂ =

r11 r12 · · · r1n
0 r22 · · · r2n
· · · · · · · · · · · ·
0 0 · · · rnn

 .

16

If A is not of full rank, then there exists k (1 ≤ k ≤ n) such that ak can be represented by a linear
combination of a1, · · · , ak−1.2 By the Gram-Schmidt orthogonalization, we necessarily have rkk = 0.
Conversely, if rkk = 0 for some k with 1 ≤ k ≤ n,3 we must have

ak =

k−1∑
i=1

rikqi ∈ ⟨a1, · · · , ak−1⟩.

That is, ak is a linear combination of a1, · · · , ak−1. So A is not of full rank. Combined, we conclude A has
rank n if and only if all the diagonal entries of R̂ are nonzero.

(b)

Proof. At least k. By the condition, we have

⟨a1, · · · , ak⟩ = ⟨q1, · · · , qk⟩.

So the rank of A is at least k. The following example shows that the rank of A could be larger than k:

Q̂R̂ = (q1, q2, q3)

1 0 0
0 0 1
0 0 0

 = (q1, 0, q2) = A.

Therefore rank(A) = 2 > k = 1.

8 Gram-Schmidt Orthogonalization
8.1.

Proof. To obtain q1, we use the formula v1 = a1 and q1 = v1
||v1|| . The computation of norm || · || involves m

multiplications, m− 1 additions and one square root. So the total number of flops needed for computing the
Euclidean norm of a vector in Rm is 2m. This implies the flops needed for obtaining q1 is 2m +m = 3m,
where the second term m comes from division of v1 by ||v1||. In summary, the flops for q1 is 3m.

Suppose we have obtained q1, q2, · · · , qj−1, we count the flops needed for obtaining qj . Algorithm 8.1
uses the formula

vj = P⊥qj−1 · · ·P⊥q2P⊥q1aj .

The projection P⊥q1aj = aj−q1q
∗
1aj involves m multiplication and (m−1) addition for q∗1aj , m multiplication

for q1(q∗1aj), and m subtraction for aj−q1(q
∗
1aj). So the total number of flops is m+(m−1)+m+m = 4m−1.

This type of computation will be repeated (j−1) times, so the flops needed to obtain vj is (4m−1)(j−1). As
shown in the case of q1, the normalization qj =

vj

||vj || needs 3m flops. So the flops for qj is (4m−1)(j−1)+3m.
Summing up flops in each step, the total number of flops for Algorithm 8.1 is

∑n
j=1[(4m−1)(j−1)+3m] =

(4m− 1) · n(n−1)
2 + 3mn.

8.2.

Proof. A translation of Algorithm 8.1 into MATLAB code is given below:

function [Q, R] = mgs(A)

%MGS computes a reduced QR factorization of an m x n matrix A with m no
% less than n, using modified Gram-Schmidt orthogonalizatoin. The output
% variables are an m x n orthonormal matrix Q and an n x n triangular
% matrix.

2The case of k = 1 is understood as a1 = 0.
3The case of k = 1 is understood as a1 = 0.

17

%
% Implementation is based on Algorithm 8.1 of [1], pp. 58.
%
% Z.Y., 07/11/2010.
%
% Reference:
% [1] Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra.
% Exercise 8.2.

[m, n] = size(A);

if (m<n)
error('number of rows must be no less than number of columns.');

end

Q = zeros(m,n);
R = zeros(n,n);

for i=1:n
Q(:, i) = A(:, i);

end

for i=1:n
R(i,i) = norm(Q(:,i),2);
Q(:,i) = Q(:,i)/R(i,i);
for j = (i+1):n

R(i,j) = Q(:,i)'*Q(:,j);
Q(:,j) = Q(:,j) - R(i,j)*Q(:,i);

end
end

end %mgs

An alternative but equivalent, both theoretically and numerically, implementation is a translation of formula
(8.7) into MATLAB code, which is given below:

function [Q, R] = mgs_alt(A)

%MGS_ALT computes a reduced QR factorization of an m x n matrix A with m no
% less than n, using modified Gram-Schmidt orthogonalizatoin. The
% output variables are an m x n orthonormal matrix Q and an n x n
% triangular matrix.
%
% Implementation is based on formula (8.7) of [1], pp. 58.
%
% Z.Y., 07/11/2010.
%
% Reference:
% [1] Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra.
% Exercise 8.2.

[m, n] = size(A);

if (m<n)

18

error('number of rows must be no less than number of columns.');
end

Q = zeros(m,n);
R = zeros(n,n);

R(1,1) = norm(A(:,1),2);
Q(:,1) = A(:,1)/R(1,1);

for j=2:n
v = A(:,j);
for i=1:(j-1)

R(i,j) = Q(:,i)'*v;
v = v - R(i,j)*Q(:,i);

end
R(j,j) = norm(v,2);
Q(:,j) = v/R(j,j);

end

end %mgs_alt

8.3.

Proof. We have the following factorization of Rj :

Rj =

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
· ·
0 0 · · · 1

rjj
− rj(j+1)

rjj
· · · − rjn

rjj

0 0 · · · 0 1 · · · 0
· ·
0 0 · · · 0 0 · · · 1

=

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
· ·
0 0 · · · 1

rjj
0 · · · 0

0 0 · · · 0 1 · · · 0
· ·
0 0 · · · 0 0 · · · 1

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
· ·
0 0 · · · 1 −rj(j+1) · · · −rjn
0 0 · · · 0 1 · · · 0
· ·
0 0 · · · 0 0 · · · 1

From formula (8.10), we can easily see that the diagonal matrix corresponds to the line qi = vi/rii in
Algorithm 8.1, and the unit upper-triangular matrix corresponds to the line vj = vj − rijqi in Algorithm
8.1.

9 MATLAB
9.1.

Proof. The MATLAB code is given below:

function discrete_legendre_polynomials

%DISCRETE_LEGENDRE_POLYNOMIALS implements Experiment 1 of [1], Chapter 9.

19

%
% Z.Y., 07/11/2010.
%
% Reference
% [1] Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. SIAM,
% 1997.

% MATLAB program of Experiment 1
legendre(7);

% maximum error as a function of the (base 1/2) power of the grid spacing
p1 = 4;
p2 = 20;
errs = [];
for v = p1:p2

errs = [errs, legendre(v)];
end

figure(3);
slope = (log(errs(end))-log(errs(1)))/(p2-p1);
plot(p1:p2, log(errs));
ylabel('logarithm of max error between the first 4 discrete and continuous Legendre polynomials');
xlabel('(base 1/2) power of the grid spacing');
title(['slope = ', num2str(slope)]);

end %discrete_legendre_polynomials

%%%%%%%%%%%%%%%% Nested Function %%%%%%%%%%%%%%%%%%%%%%%%%%

function error = legendre(v)

% Experiement 1
x = (-2^v:2^v)'/2^v;
A = [x.^0 x.^1 x.^2 x.^3];
[Q, R] = qr(A, 0);
scale = Q(2^(v+1)+1,:);
Q = Q*diag(1./scale);

figure(1);
plot(x, Q);

% error between the first 4 discrete and continuous Legendre polynomials,
% based on formula (7.1) of [1].
n = length(x);
L = [ones(n,1) x (1.5*x.^2-0.5) (2.5*x.^3-1.5*x)];

figure(2);
subplot(2,2,1);
plot(x, Q(:,1)-L(:,1));
subplot(2,2,2);
plot(x, Q(:,2)-L(:,2));
subplot(2,2,3);
plot(x, Q(:,3)-L(:,3));

20

subplot(2,2,4);
plot(x, Q(:,4)-L(:,4));

error = max(max(abs(L-Q)));

end %legendre

4 6 8 10 12 14 16 18 20
−14

−12

−10

−8

−6

−4

−2

lo
ga

rit
hm

 o
f m

ax
 e

rr
or

 b
et

w
ee

n
th

e
fir

st
 4

 d
is

cr
et

e
an

d
co

nt
in

uo
us

 L
eg

en
dr

e
po

ly
no

m
ia

ls

(base 1/2) power of the grid spacing

slope = −0.69779

9.2.

Proof. The eigenvalue of A is 1; the determinant of A is 1; and the rank of A is m. To find the inverse of A, we
denote by N the m×m matrix with 1 on the first superdiagonal and 0 everywhere else. Then N is nilpotent
with power (m−1), i.e. Nm−1 = 0. Therefore A−1 = (I+2N)−1 = I−2N+(2N)2−· · ·+(−1)m−2(2N)m−2.
For example, when m = 3, we have

A =

1 2 0
0 1 2
0 0 1

 , A−1 =

1 −2 4
0 1 −2
0 0 1

 .

By Theorem 5.3 and the fact that 1
σm

is the largest singular value of A−1, we have

σm =
1

||A−1||2
.

So an upper bound on σm is the inverse of a lower bound on ||A−1||2. Since A−1em = ((−2)m−1, (−2)m−2, · · · , 1)′,
we conclude ||A−1||2 ≥ ||((−2)m−1, (−2)m−2, · · · , 1)′||2 =

√
4m−1√

3
. This gives us

σm ≤
√
3√

4m − 1
.

For example, when m = 3, σ ≈ 0.1939 while
√
3√

4m−1
≈ 0.2182; when m = 5, σ ≈ 0.0470 while

√
3√

4m−1
≈

0.0542.

21

10 Householder Triangularization
10.1. (a)

Proof. The Householder reflector F has the general form of I − 2qq∗, where q is a unit vector. If λ is an
eigenvalue and x is an associated eigenvector, we have x− 2qq∗x = λx, or equivalently, (1− λ)x = 2(q∗x)q.
So 1 is an eigenvalue and the space of associated eigenvectors is ⊥ q = {x : q∗x = 0}. Geometrically, this
eigen-space is the hyperplane H in Figure 10.1, which is invariant under the Housholder reflection.

If λ ̸= 1, we can conclude x is a scalar multiple of q. Suppose x = µq with µ ̸= 0. Then (1−λ)µ = 2µ. So
λ = −1 is an eigenvalue and the space of associated eigenvectors is ⟨q⟩ = {µq : µ ∈ C or R}. Geometrically,
this eigen-space is the straight line going through x and ||x||xe1 in Figure 10.1, which is invariance under the
reflection with respect to H.

Remark 6. Beside direct computation, we can verify that the Housholder reflector satisfies the condition
F 2 = I. So the eigenvalues must be either 1 or −1.

(b)

Proof. By the fact that F 2 = I, we conclude detF = ±1. Denote by a1, · · · , am the eigenvalues of F , with
the same multiplicity they have as roots of the characteristic polynomial of F , then

∑m
i=1 ai = trF (see, for

example, Lax [1], Chapter 6, Theorem 3). So
∑m

i=1 ai = m − 2. We already know from part (a) that each
ai is either 1 or −1. Define p+ = #{ai : ai = 1, 1 ≤ i ≤ m} and p− = #{ai : ai = −1, 1 ≤ i ≤ m}. Solving
the system of equations {

p+ + p− = m

p+ − p− = m− 2,

we have p+ = m− 1, p− = 1. Therefore detF =
∏m

i=1 ai = −1.

Remark 7. We don’t really need to go through the above algebraic argument to see detF = −1. Indeed,
as easily seen from Figure 10.1, all the vectors on the hyperplane H have eigenvalue 1, while the vector
perpendicular to H has eigenvalue −1. Since a vector perpendicular to H and a basis of H together form a
basis for the whole space, we can conclude the eigenspace for eigenvalue 1 has dimension (m − 1) and the
eigenspace for eigenvalue −1 has dimension 1. Hence detF = −1.

(c)

Proof. We note F ∗ = F . By Theorem 5.5, the singular values of F are all equal to 1.

10.2. (a)

Proof. The MATLAB code is given below

function [W, R] = house(A)

%HOUSE computes an implicit representation of a full QR factorization A =
% QR of an m x n matrix A with m >= n using Householder reflections.
%
% Z.Y., 7/14/2010.
%
% Reference
% [1] Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra.
% SIAM, 1997. Algorithm 10.1. Exercise 10.2(a).

[m, n] = size(A);

if (m<n)
error('number of rows cannot be smaller than number of columns.');

22

end

W = zeros(m,n);
for k=1:n

x = A(k:m, k);
if (x(1)>=0)

sgn = 1;
else

sgn = -1;
end
v = sgn*norm(x,2)*eye(m-k+1,1)+x;
v = v/norm(v,2);
A(k:m, k:n) = A(k:m, k:n) - 2*v*v'*A(k:m, k:n);
W(k:m,k) = v;

end

R = A(1:n,:);

end %house

(b)

Proof. The MATLAB code is given below

function Q = formQ(W)

%FORMQ takes the matrix W = (v1, ..., vn) produced by Algorithm 10.1 of
% [1] as input and generates a corresponding m x m orthogonal matrix
% Q.
%
% Z.Y., 7/14/2010.
%
% Reference
% [1] Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra.
% SIAM, 1997. Algorithm 10.3. Exercise 10.2(b).

[m, n] = size(W);

if (m<n)
error('number of rows cannot be smaller than number of columns.');

end

Q = eye(m,m);
for k = 1:m

Q(:,k) = formQx(W,Q(:,k));
end

end %formQ

%%%%%%%%%%% Nested function %%%%%%%%%%%%%%%%

function y = formQx(W, x)

23

[m, n] = size(W);

if (m<n)
error('number of rows cannot be smaller than number of columns.');

end

if (~isvector(x))
error('x must be a vector.');

elseif (length(x) ~= m)
error('length of x must agree with the number of rows for W.');

end

for k = n:-1:1
x(k:m) = x(k:m)-2*W(k:m,k)*(W(k:m,k)'*x(k:m));

end

y = x;
end %formQx

10.3.

Proof. The Gram-Schmidt routine mgs of Exercise 8.2 produces the following Q and R:

Q =

0.1010 0.3162 0.5420
0.4041 0.3534 0.5162
0.7071 0.3906 −0.5248
0.4041 −0.5580 0.3871
0.4041 −0.5580 −0.1204

 , R =

9.8995 9.4954 9.6975
0 3.2919 3.0129
0 0 1.9701

 .

The Householder routines house and formQ of Exercise 10.2 produce the following Q and R:

Q =

−0.1010 −0.3162 0.5420 −0.6842 −0.3577
−0.4041 −0.3534 0.5162 0.3280 0.5812
−0.7071 −0.3906 −0.5248 0.0094 −0.2683
−0.4041 0.5580 0.3871 0.3656 −0.4918
−0.4041 0.5580 −0.1204 −0.5390 0.4695

 , R =

−9.8995 −9.4954 −9.6975
0 −3.2919 −3.0129
0 0 1.9701

 .

MATLAB’s built-in command qr produces the following Q and R:

Q =

−0.1010 −0.3162 0.5420
−0.4041 −0.3534 0.5162
−0.7071 −0.3906 −0.5248
−0.4041 0.5580 0.3871
−0.4041 0.5580 −0.1204

 , R =

−9.8995 −9.4954 −9.6975
0 −3.2919 −3.0129
0 0 1.9701

 .

To see all these results agree, recall QR = (q1, · · · , qn)

r1
· · ·
rn

. So, if a column in Q changes its sign, the

corresponding row in R should also change its sign.

10.4. (a)

Proof.
F

(
x
y

)
=

(
−c s
s c

)(
x
y

)
=

(
−cx+ sy
sx+ cy

)
.

24

So the midpoint of
(
x
y

)
and F

(
x
y

)
is
(

1−c
2 x+ s

2y
s
2 + c+1

2 y

)
, which is perpendicular to the vector connecting

(
x
y

)
and F

(
x
y

)
:

1

2

[(
x
y

)
+ F

(
x
y

)]∗ [(
x
y

)
− F

(
x
y

)]
=

1

2

[
(x, y)

(
x
y

)
− (x, y)F ∗F

(
x
y

)]
= 0.

This shows F is a reflection.

J

(
x
y

)
=

(
cos θ sin θ
− sin θ cos θ

)(
r cosα
r sinα

)
= r

(
cos θ cosα+ sin θ sinα
− sin θ cosα+ cos θ sinα

)
= r

(
cos(α− θ)
sin(α− θ)

)
.

So J represents a clockwise rotation of angle θ.

11 Least Squares Problems
11.1.

Proof. If m = n, we have nothing to prove. So without loss of generality, we assume m > n. Suppose the

reduced QR factorization of A is Q̂R̂ =

(
Q̂1

Q̂2

)
R̂ where R̂ is an n × n diagonal matrix and Q̂1 is also of

dimension n× n. Then A1 = Q̂1R̂ and we have

A+ = (A∗A)−1A∗ = (R̂∗Q̂∗Q̂R̂)−1(R̂∗Q̂∗) = R̂−1Q̂∗ = A−1
1 Q̂1Q̂

∗.

Therefore ||A+||2 ≤ ||A−1
1 ||2||Q̂1Q̂

∗||2. To finish the proof, it suffices to prove ||Q̂1Q̂
∗||2 ≤ 1. Indeed, since

the columns of Q̂ are orthonormal, we can always find an m × (m − n) matrix H such that (Q̂,H) is an

orthonormal matrix. Write H in the form of
(
H1

H2

)
where H1 is of size n × (m − n) and H2 is of size

(m− n)× (m− n). Then, for any b ∈ Rm or Cm, we have

||Q̂1Q̂
∗b||2 ≤

∣∣∣∣∣∣∣∣(Q̂1 H1

Q̂2 H2

)(
Q̂∗b
0

)∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣(Q̂∗b
0

)∣∣∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣∣∣(Q̂∗b

H∗b

)∣∣∣∣∣∣∣∣
2

=
∣∣∣∣∣∣(Q̂,H

)∗
b
∣∣∣∣∣∣
2
= ||b||2.

This implies ||Q̂1Q̂
∗||2 ≤ 1. Combined, we can conclude ||A+||2 ≤ ||A−1

1 ||2.

Remark 8. We make the following interesting observation. Suppose Q is an m×m orthogonal matrix and
we write it in the form of

Q =

(
Q11 Q12

Q21 Q22

)
,

where Q11 is of size n × n, Q12 is of size n × (m − n), Q21 is of size (m − n) × n, and Q22 is of size
(m − n) × (m − n). In general, we cannot claim Q11 is orthogonal and conclude ||Q11||2 = 1, but we can
conclude Q11 is a contraction under the 2-norm, i.e. ||Q11||2 ≤ 1. This is because for any z ∈ Rn or Cn,

||Q11z||2 ≤
∣∣∣∣∣∣∣∣(Q11 Q12

Q21 Q22

)(
z
0

)∣∣∣∣∣∣∣∣ = ||z||2,

where the special property that an orthogonal matrix preserves 2-norm is used.

11.2. (a)

25

Proof. The problem is to find coefficient a1, a2 and a3 such that
∫ 2

1

[
a1e

x + a2 sinx+ a3Γ(x)− x−1
]2

dx is
minimized. Let F (a1, a2, a3) =

∫ 2

1

[
a1e

x + a2 sinx+ a3Γ(x)− x−1
]2

dx. Then the conditions for extremum
∂

∂a1
F (a1, a2, a3) = 0

∂
∂a2

F (a1, a2, a3) = 0
∂

∂a3
F (a1, a2, a3) = 0

translate into the following system of linear equations
∫ 2

1
e2xdx

∫ 2

1
ex sinxdx

∫ 2

1
Γ(x)exdx∫ 2

1
ex sinxdx

∫ 2

1
sin2 xdx

∫ 2

1
Γ(x) sinxdx∫ 2

1
exΓ(x)dx

∫ 2

1
sinxΓ(x)dx

∫ 2

1
Γ2(x)dx

a1
a2
a3

 =

∫ 2

1
ex

x dx∫ 2

1
sin x
x dx∫ 2

1
Γ(x)
x dx

 .

Using the numerical integration routine of MATLAB (quad), we can compute the matrix in the above
equation as well as the column vector in the right side of the equation. Solving it gives us the (theoretically)
accurate solution of optimal fitting.

function [acc_coeff, acc_L2err, apprx_coeff, apprx_L2err] = L2Approx(l,r)

%L2APPROX approximates the function x^(-1) in the space L^2[1, 2] by a linear
% combination of exp(x), sin(x) and gamma(x).
%
% Z.Y., 7/18/2010.
%
% Reference
% [1] Lloyd Trefethen and David Bau III. Numerical Linear Algebra,
% SIAM, 1997. Exercise 11.2.
%
% Example: L2Approx(1,2);

% Accurate solution: compute coefficients
tol = 1.0e-15;
f11 = @(x)exp(2*x);
f12 = @(x)exp(x).*sin(x);
f13 = @(x)gamma(x).*exp(x);
f22 = @(x)sin(x).*sin(x);
f23 = @(x)gamma(x).*sin(x);
f33 = @(x)gamma(x).*gamma(x);
g1 = @(x)exp(x)./x;
g2 = @(x)sin(x)./x;
g3 = @(x)gamma(x)./x;

accA = zeros(3,3); accb = zeros(3,1);
for i=1:3

accb(i) = eval(['quad(g',num2str(i),', l, r,tol);']);
for j=i:3

accA(i,j) = eval(['quad(f',num2str(i),num2str(j),', l, r,tol);']);
accA(j,i) = accA(i,j);

end
end

acc_coeff = accA\accb;
acc_L2err = quad(@(x)L2Err(x,acc_coeff), l, r, tol);

26

figure(1);
step = 0.001;
x = l:step:r;
y = exp(x)*acc_coeff(1) + sin(x)*acc_coeff(2) + gamma(x)*acc_coeff(3);
z = 1./x;
plot(x, z, 'b', x, y, 'r');
legend('1/x', [num2str(acc_coeff(1)), 'exp(x)+', ...

num2str(acc_coeff(2)), 'sin(x)+', ...
num2str(acc_coeff(3)), 'gamma(x)']);

grid on;
title(['Approximation of 1/x by linear combination of exp(x), sin(x), ',...

'gamma(x) in L2-norm over [', num2str(l),',',num2str(r),']', ...
', L2 err: ', num2str(acc_L2err)]);

% Approximate solution: least square problem
apprx_step = 0.00001;
xx = l:apprx_step:r;
apprxA = [exp(xx)', sin(xx)', gamma(xx)'];
apprxb = 1./xx';
apprx_coeff = apprxA\apprxb;
apprx_L2err = norm(apprxA*apprx_coeff - apprxb, 2)/length(apprxb);

figure(2);
plot(xx, 1./xx, 'b', xx, apprxA*apprx_coeff, 'r');
legend('1/x', [num2str(apprx_coeff(1)), 'exp(x)+', ...

num2str(apprx_coeff(2)), 'sin(x)+', ...
num2str(apprx_coeff(3)), 'gamma(x)']);

grid on;
title(['Approximation of 1/x by linear combination of exp(x), sin(x), ',...

'gamma(x) in discrete L2-norm over [', num2str(l),',',num2str(r),...
'], discrete L2 err: ', num2str(apprx_L2err)]);

end %appox

%%%%%%%%%%%%%%%%%%%%% Nested function %%%%%%%%%%%%%%%%%%%%%
function err = L2Err(x, a)

a1 = a(1); a2 = a(2); a3 = a(3);
err = (a1*exp(x) + a2*sin(x) + a3*gamma(x) - 1./x).^2;
end %L2_err

Remark 9. The help information of MATLAB, under the entry pseudoinverses, explains three equivalent
ways of solving a rank-deficient system: If A is m-by-n with m > n and full rank n, then each of the three
statements

x = A\b
x = pinv(A)*b
x = inv(A'*A)*A'*b

theoretically computes the same least squares solution x, although the backslash operator does it faster.

11.3.

27

Proof. The MATLAB code for this exercise is given below:

function x = poly_apprx

%POLY_APPRX approximates the function x^(-1) in the space L^2[1, 2] by a linear
% combination of exp(x), sin(x) and gamma(x).
%
% Z.Y., 7/18/2010.
%
% Reference
% [1] Lloyd Trefethen and David Bau III. Numerical Linear Algebra,
% SIAM, 1997. Exercise 11.3.

format long;
m = 50; n = 12;
t = linspace(0,1,m);

A = fliplr(vander(t));
A = A(:,1:12);
b = cos(4*t)';

%(a) Formation and solution of the normal equations, using MATLAB's \
R = chol(A'*A);
x1 = R\(R'\(A'*b));

%(b) QR factorization computed by mgs (modified Gram-Schmidt, Exercise 8.2)
[Q, R] = mgs(A);
x2 = R\(Q'*b);

%(c) QR factorization computed by house (Householder triangularization,
%Exercise 10.2)
[W, R] = house(A);
Q = formQ(W);
Q = Q(:,1:n);
x3 = R\(Q'*b);

%(d) QR factorization computed by MATLAB's qr (also Householder
%triangularization)
[Q, R] = qr(A);
x4 = R\(Q'*b);

%(e) x = A\b in MATLAB (also based on QR factorization)
x5 = A\b;

%(f) SVD, using MATLAB's svd
[U, S, V] = svd(A,0);
x6 = V*(S\(U'*b));

x = [x1, x2, x3, x4, x5, x6];
end %poly_apprx

The results of these six lists of twelve coefficients are recorded in the following tables, from which we can
see that results from method (c)-(f) are consistent, result from method (b) is somewhat different, and result
from method (a) is unstable.

28

coefficients x1 x2 x3

a0 1.00000001465169 1.00000000350410 1.00000000099659
a1 -0.00000449714573 -0.00000117405761 -0.00000042274146
a2 -7.99982732153282 -7.99995281040164 -7.99998123572225
a3 -0.00259730734173 -0.00074001641075 -0.00031876281895
a4 10.68694453795226 10.67267129913343 10.66943079325323
a5 -0.09313280176144 -0.02850450420331 -0.01382027756329
a6 -5.42151357259457 -5.60529257307527 -5.64707565382729
a7 -0.48952347964704 -0.15207694321151 -0.07531598015849
a8 2.18420198493399 1.78455754119606 1.69360691536360
a9 -0.35588588385285 -0.06108461047809 0.00603214174793
a10 -0.22300544585926 -0.34618754322297 -0.37424171636699
a11 0.06070014261595 0.08296770979626 0.08804057827562

coefficients x4 x5 x6

a0 1.00000000099661 1.00000000099661 1.00000000099661
a1 -0.00000042274331 -0.00000042274367 -0.00000042274330
a2 -7.99998123567923 -7.99998123566715 -7.99998123567958
a3 -0.00031876330399 -0.00031876345909 -0.00031876329890
a4 10.66943079635676 10.66943079740723 10.66943079631425
a5 -0.01382028980042 -0.01382029406980 -0.01382028959570
a6 -5.64707562270147 -5.64707561163632 -5.64707562330371
a7 -0.07531603222675 -0.07531605097010 -0.07531603110511
a8 1.69360697232565 1.69360699300149 1.69360697099570
a9 0.00603210250426 0.00603208818858 0.00603210347811
a10 -0.37424170091224 -0.37424169526212 -0.37424170131392
a11 0.08804057562238 0.08804057465256 0.08804057569379

References
[1] Peter Lax. Linear algebra and its applications, 2nd Edition. John Wiley & Sons, Inc., New York, 2007.

1, 7, 5, 10

[2] James R. Munkres. Analysis on manifolds. Westview Press, 1997. 1

[3] Kosaku Yosida. Functional analysis, 6th Edition. Springer, 2003.

2

29

	Matrix-Vector Multiplication
	Orthogonal Vectors and Matrices
	Norms
	The Singular Value Decomposition
	More on the SVD
	Projectors
	QR Factorization
	Gram-Schmidt Orthogonalization
	MATLAB
	Householder Triangularization
	Least Squares Problems

