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Abstract

This is_a solution manual of selected exercise problems from Analysis on manifolds, by James R.
Munkres [EI] If you find any typos/errors, please email me at zypublic@hotmail.com.
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1 Review of Linear Algebra

A good textbook on linear algebra from the viewpoint of finite-dimensional spaces is Lax [2]. In the
below, we make connections between the results presented in the current section and that reference.

Theorem 1.1 (page 2) corresponds to Lax [2, page 5], Chapter 1, Lemma 1.
Theorem 1.2 (page 3) corresponds to Lax [2, page 6], Chapter 1, Theorem 4.
Theorem 1.5 (page 7) corresponds to Lax [2, page 37|, Chapter 4, Theorem 2 and the paragraph below
Theorem 2.
2. (Theorem 1.3, page 5) If A is an n by m matrix and B is an m by p matrix, show that
|4 B| < ml|A||B|.

Proof. Foranyi=1,---n,j=1,--- p, we have

D aibis| < Y laibis| < A bl < m|A||B].
k=1 k=1 k=1
Therefore,
m
|A- B| :max{ Zaikbkj si=1,---n,j=1,--- ,p} < m|A||B].
k=1

O

3. Show that the sup norm on R? is not derived from an inner product on R?. [Hint: Suppose (x,y) is an
inner product on R? (not the dot product) having the property that |z| = (z,z)'/2. Compute (z &y, z + y)
and apply to the case © = e; and y = ez

Proof. Suppose (-, -) is an inner product on R? having the property that |z| = (x,m)é, where |z| is the sup
norm. By the equality (z,y) = 1(|z + y|* — |z — y|?), we have

1 1 3
(e1,e1 + ) = 1(|2€1 + e’ —|ea]?) = 1(4 -1)= 7
1 1
(e1,€2) = Z(|€1 +eaf’ —er —eaf’) = 1(1 -1)=0,
<€1,€1> = |€1|2 = ].

So (e1,e1+e3) # {e1,e2)+(e1,e1), which implies (-, -) cannot be an inner product. Therefore, our assumption
is not true and the sup norm on R? is not derived from an inner product on R2. O

2 Matrix Inversion and Determinants

1. Consider the matrix

1 2
A= 1 -1
0 1

(a) Find two different left inverse for A.
(b) Show that A has no right inverse.

(a)



bi1 b2 b13) Then BA — <b11 + b1z 2b11 — b2 + bi3

Proof. B = (b ) So BA = I, if and only if
21

bao  bos ba1 +baa 2021 — bio + a3
bii +bi2=1
ba1 4+ b2 =0

2b11 — b1z +b13=0
2bg1 — bog + boz = 1.

Plug —b12 = b1; — 1 and —boy = bay into the las two equations, we have

3b11+biz=1
3ba1 + baz = 1.

So we can have the following two different left inverses for A: By = (8 (1) 1) and By = (} Pl _§> . g

(b)
Proof. By Theorem 2.2, A has no right inverse. O
2.

Proof. (a) By Theorem 1.5, n > m and among the n row vectors of A, there are exactly m of them are
linearly independent. By applying elementary row operations to A, we can reduce A to the echelon form

6" . So we can find a matrix D that is a product of elementary matrices such that DA = [Igl } .
(b) If rank A = m, by part (a) there exists a matrix D that is a product of elementary matrices such that
I
pa-[5]

Let B = [I,,,0]D, then BA = I,,,, i.e. B is a left inverse of A. Conversely, if B is a left inverse of A, it is
easy to see that A as a linear mapping from R™ to R™ is injective. This implies the column vectors of A are
linearly independent, i.e. rankA = m.

(c) A has a right inverse if and only if A" has a left inverse. By part (b), this implies rankA = rank A'" =

n. O]
4.
Proof. Suppose (Dk)kK:1 is a sequence of elementary matrices such that Dy --- Do D1 A = I,,. Note Dg --- Do D1 A =
Dy ---DyDi 1, A, we can conclude A™! = Dy --- Dy D1 I,,. O
5.
A1 d —b 1
Proof. =\_, 4 )aw by Theorem 2.14. O

3 Review of Topology in R”

2.

Proof. X =R, Y =(0,1],and A=Y. O
3.



Proof. For any closed subset C of Y, f~3(C) = [f~1(C)n AJU [f~1(C) N B]. Since f~1(C) N A is a closed
subset of A, there must be a closed subset D; of X such that f~1(C) N A = Dy N A. Similarly, there is a
closed subset Dy of X such that f~'(C)NB = DyNB. So f~1(C) = [D; N AJU[DyN B]. A and B are
closed in X, so D1 N A, DoN B and [D; N AJU[D2 N B] are all closed in X. This shows f is continuous. [

7.
Proof. (a) Take f(z) = yo and let g be such that g(yo) # zo but g(y) — 20 as y — yo. O

4 Compact Subspaces and Connected Subspace of R"

1.

Proof. (a) Let #,, = (2nm+%) "' and y,, = (2nm—%)~!. Then as n — 00, |2, —yn| — 0 but |sini—sinyin\ =
2. O
3.

Proof. The boundedness of X is clear. Since for any i # j, |e; — e;| = 1, the sequence (e;)52; has no
accumulation point. So X cannot be compact. Also, the fact |e; — e;| = 1 for ¢ # j shows each e; is
an isolated point of X. Therefore X is closed. Combined, we conclude X is closed, bounded, and non-
compact. O

5 The Derivative

1.

M exists. Consequently, lim;_,

Proof. By definition, lim;_,q 0 w = lims_,0 W

exists and is equal to cf’(a;u).
2.
Proof. (a) f(u) = f(u1,u2) = 7#42. So

fltu) — f(0) 1 t>ujus 1 wug

t t2(u2 4+ u?)  tu+ul

In order for lim;_,q M to exist, it is necessary and sufficient that ujus = 0 and u% + u% # 0. So for
vectors (1,0) and (0,1), f/(0;u) exists, and we have f/(0;(1,0)) = f/(0;(0,1)) = 0.

(b) Yes, le(O) = DQf(O) =0.

(c) No, because f is not continuous at 0: lim s ) —0,y—ka f(2,¥y) = gﬁ_ﬁ% = 1—1-% For k # 0, the limit
is not equal to f(0).

(d) See (c). O

6 Continuously Differentiable Functions

1.
Proof. We note

oyl _1 2ty 1
<= = —vaZ+y2
22+ 42 ~ 2\ /a2 + 42 2 vy
|yl

So lim, )0 Ty = 0. This shows f(z,y) = |zy| is differentiable at 0 and the derivative is 0. However,

for any fixed y, f(z,y) is not a differentiable function of z at 0. So its partial derivative w.r.t. = does not
exist in a neighborhood of 0, which implies f is not of class C! in a neighborhood of 0. O



7 The Chain Rule
8 The Inverse Function Theorem
9 The Implicit Function Theorem

10 The Integral over a Rectangle

6.

Proof. (a) Straightforward from the Riemann condition (Theorem 10.3).
(b) Among all the sub-rectangles determined by P, those whose sides contain the newly added point have
a combined volume no greater than (meshP)(width(Q))"~!. So

0< L(f,P") — L(f,P) < 2M (meshP)(widthQ)"*

The result for upper sums can be derived similarly.
(c) Given ¢ > 0, choose a partition P’ such that U(f,P') — L(f,P') < §. Let N be the number of

partition points in P’ and let
€

8MN (widthQ)n—1
Suppose P has mesh less than §, the common refinement P” of P and P’ is obtained by adjoining at most
N points to P. So by part (b)

6:

1" , : n—1 : n—1 € _ =
0<L(f,P")— L(f,P) <N -2M(meshP)(width@) < 2M N (width@) SMN(widthQ)—1 ~ 1"

()

Similarly, we can show 0 < U(f, P) —U(f,P") < §. So
U(f,P)=L(f,P) = [U(/,P)— (faP”)]Jr[L(ﬁp”)—L(f,P)}+[U(f,P”)—L(f7P”)]
< §+e4+[ (. P') = L(f.P')
c £.€
- 2 2
= .
This shows for any given ¢ > 0, there is a § > 0 such that U(f, P) — L(f, P) < ¢ for every partition P of
mesh less than 4. O
7.

Proof. (Sufficiency) Note | > f(zr)v(R) — A| < e can be written as
A-e<> flxr)v(R) < A+e.
R

This shows U(f,P) < A+eand L(f,P) > A—e. SoU(f,P)— L(f, P) < 2e. By Problem 6, we conclude f
is integrable over @), with fQ f €[A—¢e, A+¢]. Since ¢ is arbitrary, we conclude fQ f=A

(Necessity) By Problem 6, for any given € > 0, there is a § > 0 such that U(f, P) — L(f, P) < ¢ for every
partition P of mesh less than §. For any such partition P, if for each sub-rectangle R determined by P, xg
is a point of R, we must have

A<Zfa:R —A<U(f,P) -

Since L(f, P) < A <U(f, P), we conclude

|foR — Al <U(f,P) - L(f,P) <e¢



11 Existence of the Integral

12 Evaluation of the Integral

13 The Integral over a Bounded Set

14 Rectifiable Sets

15 Improper Integrals

16 Partition of Unity

17 The Change of Variables Theorem

18 Diffeomorphisms in R”

19 Proof of the Change of Variables Theorem
20 Applications of Change of Variables

21 The Volume of a Parallelepiped
1. (a)

I a 1+a? ab ac
Proof. Let v = (a,b,c), then X" X = (I3,0"") (5) =I3+ | b] (a,b,c) = ab 14 b? be |. O
c ca cb 14+¢2

(b)
Proof. We use both methods:

V(X) = [det(X* - X)]Y2 = [(1 +a®)(1 + 0> + ) —ab-ab+ ca- (—ac)]V/? = (1 +a® + b* + 2)Y/?

and

10 0 01 0 10 0\

V(X) = |det’Is+det> [0 1 0] +det?> |0 0 1] +det>[0 0 1 =14+ +a®+*)Y2
a b c a b c a b c
O

2.
Proof. Let X = (21, -+ ,x;, -+ ,ax) and Y = (a1, -+, Az, -+ ,x%). Then V(Y) = [Z[l] detQYI]l/2 =
[0 A2det® X ]2 = |A|[2 ) det®X1]2 = [A[V(X). m
3.
Proof. Suppose P is determined by z1, - - -, 5. Then V(h(P)) = V (A1, -+, Axg) = [NV (x1, Aza, -+, Azg) =
co= NPV (21, 20, - -+, ) = [MFV(P). O
4. (a)



Proof. Straightforward. O

(b)
Proof.
3 3 3
lal?[o]* = (a,0)* = (> a))(D_ b)) — (O arbe)?
i=1 j=1 k=1
3 3
= Z afb? — Z aibz — 2(@1b1@2b2 + a1b1a3b3 + a2b2a3b3)
ij=1 k=1
3
= Z afb? — 2((11()1(12()2 + a1b1a3b3 + a2b2a3b3)
i,j=1,i#j
= (agbs — agbs)® + (arbs — agb1)? + (a1bs — azby)?
= det? (%2 P2) e (O 01 yaer2 (9 D)
as bs az b az by
O
5. (a)
Proof. Suppose V; and V4 both satisfy conditions (i)-(iv). Then by the Gram-Schmidt process, the uniqueness
is reduced to Vi(x1,--- ,xr) = Va(xy, -+ ,x%), where xq, - - -, x are orthonormal. O
(b)
Proof. Following the hint, we can assume without loss of generality that W = R™ and the inner product is
the dot product on R™. Let V(z1,--- ,2x) be the volume function, then (i) and (ii) are implied by Theorem
21.4, (iii) is Problem 2, and (iv) is implied by Theorem 21.3: V (21, -+ , ) = [det( Xt X)]/2. O

22 The Volume of a Parametrized-Manifold

1.

Proof. By definition, v(Z3z) = [, V(D). Let x denote the general point of A; let y = a(z) and z = hoa(z) =
B(y). By chain rule, D3(x) = Dh(y) - Da(z). So [V(DB(x))]? = det(Da(z)" Dh(y)!" Dh(y)Da(z)) =
[V(Da(x))]? by Theorem 20.6. So v(Zg) = [, V(DB) = [, V(Da) = v(Ya). O

2.

Proof. Let x denote the general point of A. Then

1 0 0
0 1 0
paw=| "0
0 0 1
Dif(z) Daf(z) -+ Dif(z)
. 1/2 . 1/2
and by Theorem 21.4, V(Da(z)) = |1+ > ;1 (Dif(x)*| . Sov(Ya) = [, {1 +> i (Dif(x))?| . O

3. (a)



Proof. v = [,V(Da) and [, mdV = [, m oaV(Da). Since Da(t) = (a(z(s)lsntt) V(Da) = [a]. So

v(Yy) = |a|7r7 Jy, mdV = [Jacost|a] = 0, and [, mdV = [ asintla| = 2ala|. Hence the centroid is

(0, 20/7). 0
(b)

Proof. By Example 4, v(Y,,) = 2ra? and

2m a
rcosd - ar
mdV = — =0,
/ ' / Va —xQ—y / o vaZ—r?
2m a :
rsing - ar
modV = —— =0,
/ ’ / Va —:v?—y / 0o Vva?—r?
/ m3dV = / Vva — =d’n.
/a2 x2 2
So the centroid is (0,0, §). O
4. (a)
Proof. v = [,V , where A is the (open) triangle in R? with vertices (a,b), (a + h,b) and

(a+h,b + h) V(Da) is a contmuous function on the compact set A, so it achieves its maximum M and
minimum m on A. Let 1,73 € A be such that V(Da(z;)) = M and V(Da(xg)) m, respectively. Then

v(A)-m < v(A1(R)) <v(A)- M.

By considering the segment connecting x; and 3, we can find a point ¢ € A such that V(Da(€))v(A) =
4V A . This shows there is a point £ of R such that

o(Ai(R) = [ V(Da) = V(Dal€)u(4) = 3V (Da(e) - o(R).

A
A similar result for v(Az(R)) can be proved similarly. O
(b)
Proof. V(Da) as a continuous function is uniformly continuous on the compact set Q. O
(c)
Proof.
‘A(P)—/ V(Da)| < > |u( )+ v(Ag(R /VDa
Q R
= Z V(Da(&1(R))) + V(Da(& (R /V (Da)
R
< Z/ V(Da(éi(R))) + V(Da(é(R))) V(Da)|.
R VR 2

Given € > 0, there exists a § > 0 such that if x1,z2 € Q with |z — z2| < §, we must have |V (Da(z1)) —
V(Da(zs2))| < 7igy- So for every partition P of @ of mesh less than 4,

’A(P)/QV(DQ) <;/RU(€Q)E




23 Manifolds in R"

1.

Proof. In this case, we set U =R and V = M = {(z,2?) : € R}. Then « maps U onto V in a one-to-one
fashion. Moreover, we have

(1) a is of class C*°.

(2) a=t((x,2?)) = x is continuous, for (z,,z

) Date) = |

2

2) — (x,2%) as n — oo implies x,, — x as n — oo.

1} has rank 1 for each x € U.
2z

So M is a 1-manifold in R? covered by the single coordinate patch a. O
2.

Proof. We let U = H! and V = N = {(z,22) : € H'}. Then 8 maps U onto V in a one-to-one fashion.
Moreover, we have

(1) B is of class C*°.

(2) B~ ((z,2?)) = x is continuous.

(3) DB(x) = [21;2} has rank 1 for each x € H*.
So N is a 1-manifold in R? covered by the single coordinate patch 3. O

3. (a)

Proof. For any point p € St with p # (1,0), we let U = (0,27), V = S' — (1,0), and o : U — V be defined
by a(0) = (cosf,sin@). Then o maps U onto V continuously in a one-to-one fashion. Moreover,

(1) «a is of class C°.

(2) a1t is continuous, for (cosf,,sinf,) — (cos®,sin @) as n — oo implies ,, — 0 as n — oo.

(3) Da(0) = {czlsnf] has rank 1.

So a is a coordinate patch. For p = (1,0), we consider U = (—m,7), V = S' — (=1,0),and 8 : U — V
be defined by 5(0) = (cosf,sinf). We can prove in a similar way that g is a coordinate patch. Combined,
we can conclude the unit circle S' is a 1-manifold in R2. O

(b)

Proof. We claim a~! is not continuous. Indeed, for ¢, = 1 — %, a(ty,) — (1,0) on S' as n — oo, but
a Ha(ty) =t, - 1#a71((1,0)) =0 as n — . O

1

4.

Proof. Let U = A and V = {(x, f(z)) : v € A}. Define a : U — V by a(z) = (z, f(z)). Then a maps U
onto V in a one-to-one fashion. Moreover,

(1) a is of class C".

(2) o=t is continuous, for (z,, f(x,)) — (z, f(z)) as n — co implies z,, — = as n — oo.

(3) Da(z) = {D]{?x)} has rank k.
So V is a k-manifold in R**! with a single coordinate patch c. O
5.

Proof. For any x € M and y € N, there is a coordinate patch « for x and a coordinate patch g for y,
respectively. Denote by U the domain of a, which is open in R* and by W the domain of 3, which is open in
either R! or H!. Then U x W is open in either R**! or H**!, depending on W is open in R! or H'. This is the
essential reason why we need at least one manifold to have no boundary: if both M and N have boundaries,
U x W may not be open in RF*! or HF*!,

10



The rest of the proof is routine. We define a map f: U x W — «(U) x (W) by f(z,y) = (a(x), B(y)).
Since «(U) is open in M and (W) is open in N by the definition of coordinate patch, f(U x W) =
a(U) x B(W) is open in M x N under the product topology. f is one-to-one and continuous, since « and 3
enjoy such properties. Moreover,

(1) f is of class C", since a and 3 are of class C".
(2) f~1 = (a71,871) is continuous since ! and B! are continuous.

_ | Da(z) 0
(3) Df(z,y) = [ 0 Dﬂ(y)} clearly has rank k + [ for each (x,y) € U x W.
Therefore, we conclude M x N is a k + [ manifold in R™*", O

6. (a)

Proof. We define oy : [0,1) — [0,1) by a1 (z) = z and ag : [0,1) — (0,1] by ag(z) = —x + 1. Then it’s easy
to check a; and ag are both coordinate patches. O

(b)

Proof. Intuitively I x I cannot be a 2-manifold since it has “corners”. For a formal proof, assume I x [ is
a 2-manifold of class C" with » > 1. By Theorem 24.3, (I x I), the boundary of I x I, is a 1-manifold
without boundary of class C”. Assume « is a coordinate patch of (I x I') whose image includes one of those
corner points. Then Da cannot exist at that corner point, contradiction. In conclusion, I x I cannot be a
2-manifold of class C” with r > 1. O

24 The Boundary of a Manifold

1.

Proof. The equation for the solid torus N in cartesian coordinates is (b — /22 + y2)? + 22 < a?, and the
equation for the torus 7' in cartesian coordinates is (b— /22 + y2)?+ 22 = a?. Define O =R and f: O - R

2 — 2xb
by f(x,y,2) = a®> — 2% — (b — /22 + y2)?. Then Df(z,y,2) = |2y — —222 has rank 1 at each point of
—2z
T. By Theorem 24.4, N is a 3-manifold and T"= 9N is a 2-manifold without boundary.

2.

Proof. We first prove a regularization result.

Lemma 24.1. Let f : R"™* — R™ be of class C". Assume Df has rank n at a point p, then there is an open
set W C R"* and a C"-function G : W — R % with C"-inverse such that G(W) is an open neighborhood
of pand foG: W — R™ is the projection mapping to the first n coordinates.

Proof. We write any point z € R"** as (z1,73) with z; € R” and x5 € R¥. We first assume D, f(p) has

rank n. Define F(z) = (f(z),22), then DF = {Dglf D;Qf]. So detDF(p) = detD,, f(p) # 0. By the
k

inverse function theorem, there is an open set U of R™** containing p such that F' carries U in a one-to-one

fashion onto an open set W of R"** and its inverse function G is of class C”. Denote by 7 : R"** — R™ the

projection m(xz) = x1, then foG(x) =m0 FoG(x) =n(x) on W.

In general, since D f(p) has rank n, there will be j; < --- < j, such that the matrix Ol fu) - hag rank

(@I, ,zin)

n at p. Here 27 denotes the j-th coordinate of z. Define H : R*** — R™*¥ as the permutation that swaps the

pairs (1.1733]'1)’ (3327333'2)7 . (:L'n7l‘j7l)’ ie. H(x)= (:L»jl’sz’ N A ) — (pjl’ij’ cee L pin e )+ p. Then
H(p) = pand D(foH)(p) = Df(H(p))DH(p) = Df(p)-DH(p). So Dy, (foH)(p) = 5020 (p) and foH
is of the type considered previously. So using the notation of the previous paragraph, fo (H o G)(z) = 7(x)
on W. O

11



By the lemma and using its notation, Vp € M = {x : f(z) = 0}, there is a C"-diffeomorphism G
between an open set W of R"** and an open set U of R"** containing p, such that f o G = m on W. So
UNM={zcU: f(zx)=0}=GW)N(foGoG 1) L({0}) = GW)NG(x1({0})) = G(W N {0} x R¥).

Therefore a(x1,- - ,xx) := G((0,x1,- - ,xk)) is a k-dimensional coordinate patch on M about p. Since p is
arbitrarily chosen, we have proved M is a k-manifold without boundary in R,
Now, Vp € N = {z: fi(z) = -+ = fu_1(z), fn(x) > 0}, there are two cases: f,(p) > 0 and f,(p) = 0.

For the first case, by an argument similar to that of M, we can find a C"-diffeomorphism G; between an
open set W of R"** and an open set U of R"* containing p, such that f o G; = 7, on W. Here 7, is the
projection mapping to the first (n — 1) coordinates. SoUNN =UN{z: fi(z) =+ = fu_1(x) =0} Nn{x:
fo(@) >0} =G (WN{0} x R¥+1)N{z € U: f,(xr) > 0}. When U is sufficiently small, by the continuity of
fn and the fact f,(p) > 0, we can assume f,(z) >0, Vo € U. So

UNN = Un{z: fi(z)=---= fu(z) =0, fu(z) > 0}
= GE(Wn{0} xR N{zecU: f,(z) >0}
= G(Wn{0} xR*'NGTHU N {z: fulz) > 0}))
= Gi(WNGTHUN{z: fu(z) > 0] N {0} x R,

This shows B(z1, - ,2ry1) := G1((0,21, -+ ,2xs1)) is a (k + 1)-dimensional coordinate patch on N about
.

For the second case, we note p is necessarily in M. So D f(p) is of rank n and there is a C"-diffeomorphism
G between an open set W of R"t* and an open set U of R"t* containing p, such that fo G = 7 on W.
SoUNN={xe€U: fi(x) = = fo1(x) =0, fulx) >0} = GW) N (7r0oG1)"L{0} x [0,00)) =
GWnr=1({0}x[0,00))) = G(WN{0}x [0, 00) x R¥). This shows y(x1,- -+ ,Txr1) = G((0, Tpy1, 1, ,Tk))
is a (k + 1)-dimensional coordinate patch on N about p.

In summary, we have shown N is a (k 4 1)-manifold. Lemma 24.2 shows ON = M. O

3.

Proof. Define H : R® — R? by H(z,y,2) = (f(z,v,2),9(x,9,2)). By the theorem proved in Problem
. Dy f(x,y,2) Dyf(w,y,z) D.f(x,y,z)
2, if DH(z,y,2) = T YA o
(5920 = | Dogla,y.2) Dyg(ry2) Deglary,2)
f(z,y,2) = g(x,y,2) = 0}, M is a 1-manifold without boundary in R3, i.e. a C” curve without singularities.

] has rank 2 for (z,y,2) € M = {(z,y,2) :

O
4.
Proof. We define f(x) = (f1(x), fa(x)) = (Jo|> —a®, 2). Let N = {z : fi(x) =0, fa(x) > 0} = §"~}(a) NH"
wnd 01 = o+ f(a) = 0. Since Df(a) = 5t 252 1 B e B 2

has rank 2 on M and Jf1/0x = [2x1, 222, - ,22,] has rank 1 on N, by the theorem proved in Problem
2, E7"(a) = N is an (n — 1) manifold whose boundary is the (n — 2) manifold M. Geometrically, M is

S"=2(a). O
5. (a)
T
Proof. We write any point z € R? as @ = |xa|, where 21 = [v11,212,713], T2 = [To1, 722, T3], and
T3
x3 = [x31,%32,233]. Define fi(z) = |21 = 1, fa(z) = a2l = 1, fa(x) = |as|® — 1, fa(z) = (21,22),
fs5(x) = (z1,23), and fe(x) = (x2,z3). Then O(3) is the solution set of the equation f(z) = 0. O
(b)
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Proof. We note

f1, -, fe)
O(x11, 12, T13, T21, T22, T23, T31, T32, T33)
2$11 21‘12 233‘13 0 0 0 0 0 0
0 0 0 21‘21 21‘22 25623 0 0 0
0 0 0 0 0 0 2.’]5‘31 2$32 2%33

Df(x) =

To1 T2 X233  T11  Ti2  X13 0 0 0
T31 T32 33 0 0 0 T11  Ti2  T13
0 0 0 T31  T32  T33 T2l Toz T3

Since x1, x2, 3 are pairwise orthogonal and are non-zero, we conclude z1, x3 and z3 are independent. From
the structure of Df, the row space of Df(x) for z € O(3) has rank 6. By the theorem proved in Problem 2,
O(3) is a 3-manifold without boundary in R?. Finally, O(3) = {z : f(z) = 0} is clearly bounded and closed,

hence compact. O
6.
Proof. The argument is similar to that of Problem 5, and the dimension = n? —n — w = @ O

25 Integrating a Scalar Function over a Manifold
1.

Proof. To see a(t,z) is a coordinate patch, we note that « is one-to-one and onto S?(a) — D, where D =
{(z,y,2) : (Va2 — 22,0, 2),|z| < a} is a closed set and has measure zero in S?(a) (note D is a parametrized
l-manifold, hence it has measure zero in R?). On the set {(¢,2) : 0 < t < 2m,|z| < a}, a is smooth and
a~Yx,y, z) = (t, 2) is continuous on S?(a) — D. Finally, by the calculation done in the text, the rank of Da
is2on {(t,2): 0 <t <2m|z| <a}.

(Da)'" Da
—(a® — 2*)?sint (a? — 22)1/2 cost 0 —(a® = 2)!2sint  (—zcost)/(a? = 22)!/2
= 2 2\1/2 : 2 2\1/2 (az - 22)1/2 cost (—zsin t)/(az 2)1/2
(—zcost)/(a* — 2%) (—zsint)/(a* — 2*) 1 0 1
B a? — 2? 0
a 0 e
So V(Da) = a and v(5%(a)) = f{(t,z):0<t<27r,\z\<a} V(Da) = 4ma?. O

4.

Proof. Let (a;) be a family of coordinate patches that covers M. Then (h o «;) is a family of coordinate
patches that covers N. Suppose ¢1, ---, ¢ is a partition of unity on M that is dominated by (), then

13



¢roh™t, -+, ¢ ok~ is a partition of unity on N that is dominated by (ho «;). Then

/Nde ;/N(qbioh_l)fd‘/

l

= Z/I tU‘(@'Oh—lohoozi)(fohoai)V(D(hoai))

l

S /I (@ioan)(fohoaV(Day)

- i /M bi(f o h)dV
/M fohdV.

In particular, by setting f = 1, we get v(N) = v(M). O

6.

Proof. Let Lo = {x € R™ : ; > 0}. Then M N Ly is a manifold, for if « : U — V is a coordinate patch on
M, a:UnNna Y(Ly) = VN Lgis a coordinate patch on M N L. Similarly, if we let L1 = {x € R" : z; < 0},
M N Ly is a manifold. Theorem 25.4 implies

(M) = @ /M v = ﬁ [/MnLO v /MnL1 de} '

Suppose («;) is a family of coordinate patches on M N Ly and there is a partition of unity ¢1,---,¢; on
M N Ly that is dominated by (), then

/ mdV = Z/ (¢jm)dV = Z/ ¢, 0 a;)(m; 0 a;)V(Day)
MNLg IntU;

Define f : R" — R™ by f(z) = (21, ,—4, - ,&yn). It’s easy to see (f o ;) is a family of coordinate
patches on M N Ly and ¢y 0 f, ---, ¢ o f is a partition of unity on M N L, that is dominated by (f o o).
Therefore

/MnL1 mdV = Z/ntU (pjofofoaj)(mofoa;)V(D(foay)) Z/ij (pjoaj)(mio foa;)V(D(foay))

In order to show ¢;(M) = 0, it suffices to show (m; 0 a;)V(Dej) = —(m; 0 f o a;)V(D(f o @;)). Indeed,

VE(D(foay)(z) = V(Df(aj(x))Day())
= det(Da;(z)" Df (o ()" Df(a;(x)) Daj(x))
(

VQ(DOé)j(w%
and 7; o f = —m;. Combined, we conclude anLl mdV = — meLO m;dV. Hence c;(M) = 0. O
8. (a)
Proof. Let (;) be a family of coordinate patches on M and ¢q, - -+, ¢; a partition of unity on M dominated
by (a;). Let (5;) be a family of coordinate patches on N and 11, - - -, ¥4 a partition of unity on N dominated
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by (B;). Then it’s easy to see ((a, 3;))i,; is a family of coordinate patches on M x N and (¢m¥n)1<m<i,1<n<k
is a partition of unity on M x N dominated by ((a;, 5;))i ;. Then

[ SR BN

1<m<l,1<n<k

= m © O+ f 0 )V (Do) (W, 0 By - go Bn)V (DB,
Z k/lntUmxlntVn(¢ - f o am)V(Dam)(Wn 0 B - g0 ba)V(DBn)

1<m<l,1<n<

= Z /1 - (Pm © Qum + f 0 am)V (Dayy,) / (1 © B - g o Bn)V(DBy)

1<m<l,1<n<k IntVy,

:[AMWAMW

O
(b)
Proof. Set f =1and g =1 1in (a). O
()
Proof. By (a), v(S! x S1) = v(S?) - v(St) = 4n%a?. O
26 Multilinear Algebra
4.
Proof. By Example 1, it is easy to see f and g are not tensors on R%. h is a tensor: h = ¢1 1 — Teha 3. O
5.
Proof. f and h are not tensors. g is a tensor and g = 5¢32.3 4.4 O
6. (a)

Proof. f=2¢122—$231,9=¢21—5¢31. S0 f @ g=2¢12221— 10012231 — ¢231,21+5¢23131. U
(b)

Proof. f® g(x,y,2,u,v) = 2x1y222uzv1 — 1021y222u3v1 — T2y321U2v1 + ST2Y321 U301 . O

7.

Proof. Suppose f =3, di¢randg =} ;d;¢,. Then fog = (3 ;did)®(>_,;dsds) =2, ;did;¢p1®ps =
> r.741d;¢r,y. This shows the four properties stated in Theorem 26.4 characterize the tensor product
uniquely. O

8.

Proof. For any v € R™, T* f(z) = f(T'(z)) = f(B-z) = (AB) - z. So the matrix of the 1-tensor T f on R™
is AB. O
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27 Alternating Tensors

1.

Proof. Since h is not multilinear, h is not an alternating tensor. f = ¢1 2 — ¢2.1 + ¢1,1 is a tensor. The only
permutation of {1,2} are the identity mapping id and o : o(1) = 2,0(2) = 1. So f is alternating if and
only if f9(xz,y) = —f(z,y). Since f7(x,y) = f(y,x) = y1x2 — yox1 + Y121 # —f(2,y), we conclude f is not
alternating.

Similarly, g = ¢1,3 — ¢3,2 is a tensor. And ¢ = ¢21 — 2,3 # —g. So g is not alternating. O
3.
Proof. Suppose I = (i1,--- ,ix). If {i1, -+ ,ix} # {j1,-- ,jr} (set equality), then ¢;(aj,,---,a;, ) = 0. If
{i1, -+ ik} = {j1, -, jr}, there must exist a permutation o of {1,2,---  k}, such that I = (i1, -+ ,ix) =
(jﬂ(l)’ e ’jﬂ(k))' Then d)f(ajl’ T 7ajk) = (Sgna)(¢1)a(aj1v T 7ajlc) = (Sgn0)¢1(aja(1) T ’aja(k)) = Sgno.

In summary, we have

sgno  if there is a permutation o of {1,2,--- ,k} such that I = J; = (jo1), ", Jok))

(bl(ajn"' ’ajk) = {0

otherwise.
O
4.
Proof. For any vy,--+ ,v; € V and a permutation o of {1,--- ,k}.
(T (v, so) = T f (o), 5 Vok) = f(T(Vo1): - s T(vor))) = f7(T(v1), -+, T(vk))
= (sgno)f(T(vy), -+, T(vx)) = (sgno) T f (v, -+, v).
So (T*f)° = (sgno)T* f, which implies T* f € A*(V). O
5.
Proof. We follow the hint and prove ¢y, = (gb])‘fl. Indeed, suppose aq, - ,a, is a basis of the underlying
vector space V, then
O ) = @0 ) = {4 )
{o if Lo # (oo1(1s s doooi) = J
1 if Iy = (Jooo—1(1), a]ooo’*l(k)) J
= ¢Ig(ajla - 7a’jk)‘

Thus, ¢ = 3, (sgn0) (¢1)7 = ¥, 1 (sgno ™) (@) = 3,1 (sgno)dr, = 3, (seno)ér, . O
28 The Wedge Product
1. (a)
Proof. F'=2¢2@¢p20¢1+¢1@¢050¢4, G = 91Q0¢3+¢30¢1. S0 AF = 205 A\p2Np1+91AP5\P1 = —P1A\pa NP5
and AG = ¢1 A ¢3 — ¢1 A ¢3 = 0, by Step 9 of the proof of Theorem 28.1. O

(b)
Proof. (AF)Nh = —¢1 A gs A d5 A (d1 —2¢3) =201 A Pa A g5 A 3 =21 A 3 A\ da A ¢s. O

(c)
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1 Y1 2

Proof. (AF)(z,y,2) = —p1 ANpa A ¢5(3,y,2) = —det | T4 ys 24| = —T1Yaz5 + T1Y524 + Tay125 — TaY521 —
Ts Ys 25

T5Y124 + T5Ya21. O
2.

Proof. Suppose G is a k-tensor, then AG (v, - - ,vr) = > (sgno)G7 (v, -+ ,v5) =y _(sgno)G(vi,- - ,vp) =
>, (sgno)|G(v1,--- ,v). Let e be an elementary permutation. Then e : ¢ — e o ¢ is an isomorphism on
the permutation group S of {1,2,--- ,k}. So S can be divided into two disjoint subsets U; and Us so that
e establishes a one-to-one correspondence between U; and Us. By the fact sgne o 0 = —sgno, we conclude
> o (sgno) = 0. This implies AG = 0. O
3.

Proof. We work by induction. For k = 2 ﬁA(fl ® f2) = f1 A fa by the definition of A. Assume for k = n,
the claim is true. Then for k =n + 1,

. A(fi® - @ fn® frg1) = ;iA((ﬁ@- “X )@ fny1) =

Il D! !A(f1®"'®fn)/\fn+1

YT Ll

by Step 6 of the proof of Theorem 28.1. By induction, ﬁA(fl QR fn) = fi N A fao So
L A(fi® Q@ fn® frr1) = f1 A+ A fu A fnr1. By the principle of mathematical induction,

PY R AT

1

——Af1®-- @ fr) =fi N A S

AN
for any k. O
4.
Proof. ¢, N+~ i (21, xn) = A(di, @+ @y ) (@1, -+ k) = D, (5800)(hs, @ -+~ @ ¢4, )7 (w1, -+ %) =
Yo (3810)(diy ® - ® 03y )(To(1)s 1 Ta(k)) = Dog (SBNO) T4y 0(1), s Tiy o (k) = det X7 O
5.

Proof. Suppose F' is a k-tensor. Then

T*(FU)(Ula T 7Uk) = FU(T(Ul)a T ’T(Uk))
F(T(0(1))s - > T(Vo(x)))
T*F(Vo(1), s Vo(k))

= (T"F)7(vy,--+ ,v).

6. (a)

Proof. T*r(vy,--- ,v) = Yr(T(v1),--+ ,T(vx)) = Yr(B-vy,---, B-v). In particular, for J = (j1,- -, jx),
cy =2 caaleg,, - seg) =T i, v e5.) = (B¢, - B-ej) = ¢r(B,,---, B5,) where f; is
the i-th column of B. So c¢j = det[3;,,---, 8;,]1. Therefore, c; is the determinant of the matrix consisting
of the iy, - -+, i rows and the j1, - -, jx columns of B, where I = (i1, - ,ig) and J = (j1, - , Jk)- O

(b)

PT’OOf. T*f = Z[I] d]T*(d)]) = Z[[] d] Z[l] detBLJ?[}J = Z[J](Z[[] d]detBLJ)?[}J where BLJ is the matrix
consisting of the iy, - - -, i, rows and the jq, - - -, ji columns of B (I = (i1, -+ ,ix) and J = (j1,- -+ ,jg)). O
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29 Tangent Vectors and Differential Forms

1.
m(t)
Proof. v (t;e1) = (y(t); Dy(t) - e1) = (v(¢); | --- |), which is the velocity vector of v corresponding to the
()
parameter value t. O
2.

Proof. The velocity vector of the curve ¥(t) = a(x +tv) corresponding to parameter value ¢t = 0 is calculated
by iy (t)li—o = limyo 2= — Daa) - v. So a(z:v) = (a(2); Dalx) -v) = (a(2): 1(Dlo). O

3.

Proof. Suppose a : U, — V,, and 3 : Ug — V3 are two coordinate patches about p, with a(z) = B(y) = p.
Because R” is spanned by the vectors e1, - - -, e, the space ’7;“(M) obtained by using « is spanned by the

vectors (p; agf) )¥_, and the space ’7;]5(M) obtained by using 3 is spanned by the vectors (p; agéy) )k, Let
J K

j=1
W =VanVs, U, =a Y(W), and Uy = 71 (W). Then =" o : U/, — U} is a C"-diffeomorphism by
Theorem 24.1. By chain rule,

Da(z) = D(B o5~ 0 a)(z) = DB(y) - D(B™" o a)(w).

Since D(B~! o a)(z) is of rank k, the linear space spanned by (aa(x)/axj)le agrees with the linear space
spanned by (98(y)/0y)i-:- H

4. (a)

Proof. Suppose a: U — V is a coordinate patch about p, with a(z) = p. Since p € M —IM, we can without
loss of generality assume U is an open subset of R*. By the definition of tangent vector, there exists u € R¥
such that v = Da(x) - u. For € sufficiently small, {z + tu : [¢{| < e} C U and v(¢) := a(x + tu) (|t| < ) has
its image in M. Clearly %~(t)|;—o = Da(z) - u = v. O

(b)

Proof. Suppose 7 : (—¢,e) — R™ is a parametrized-curve whose image set lies in M. Denote +(0) by p and
assume « : U — V is a coordinate patch about p. For v := %*y(t)hzo, we define u = Da~!(p) - v. Then

a.(w;u) = (p; Da(z) -u) = (p; Da(z) - Da™(p) -v) = (p; D(aoa™t)(p) -v) = (p;v).
So the velocity vector of v corresponding to parameter value ¢ = 0 is a tangent vector. O
5.

Proof. Similar to the proof of Problem 4, with (—¢,¢) changed to [0,¢) or (—e,0]. We omit the details. O
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30 The Differential Operator

2.

Proof. dw = —xdx Ady — zdy A dz. So d(dw) = —dx Adx Ady — dz A\ dy A\ dz = 0. Meanwhile,

dn = —2yzdz N dy + 2dx N dz = 2yzdy AN dz + 2dx N dz

and
wAn = (—2y?2? = 3x)dx A dy + (22°y + xy2z)dx A dz + (6 — y*2°)dy A dz.
So
dw An) = (—22y*z — 22 — x2 + 6)dx A dy A dz,
(dw) A = —22%dx Ady A dz — zzdx A dy A dz,
and
wAdn = 2xy?zdx Ady A dz — 6dx A dy A dz.

Therefore, (dw) An —w Adn = (—2zy*2 — 22% — 22 + 6)dx Ady A dz = d(w A 7). O
3.

Proof. In R?, w = ydx — xdy vanishes at zg = (0,0), but dw = —2dx A dy does not vanish at xy. In general,
suppose w is a k-form defined in an open set A of R™, and it has the general form w = Z[I] frdxy. If it vanishes
at each x in a neighborhood of zy, we must have f; = 0 in a neighborhood of z for each I. By continuity,
we conclude f; = 0 in a neighborhood of zq, including z¢. So dw = E[I] df; Ndxy; = Z[I](Zi D, fdx;) Ndxy
vanishes at xg. L]

4.

Proof. dw:d<2+2da:)+d<2+y dy):(IQQJrida:/\dy—i—(24r sdx A dy = 0. So w is closed. Define
0 = % log(z? + y?), then df = w. So w is exact on A. O
5. (a)

Proof. dw = %dy Adx + w(ty%%dm Ady = 0. So w is closed. O

()

Proof. We consider the following transformation from (0, 00) x (0,27) to B:

T =rcost
Yy =rsint.

Then 3(z.4)
r,Yy) cost —rsint|
det o(r,t) _dt{sint Tcost] =r#0.
By part (b) and the inverse function theorem (Theorem 8.2, the global version), we conclude ¢ is of class
. O

(d)

Proof. Using the transformation given in part (c), we have dx = costdr —rsintdt and dy = sin tdr +r cos tdt.
So w = [—rsint(costdr — rsintdt) + r cost(sintdr + rcostdt)]/r? = dt = dé. O

(e)
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Proof. We follow the hint. Suppose g is a closed 0-form in B. Denote by a the point (—1,0) of R?. For
any x € B, let y(¢) : [0,1] — B be the segment connecting a and z, with v(0) = a and (1) = z. Then by
mean-value theorem (Theorem 7.3), there exists to € (0, 1), such that g(a) —g(z) = Dg(a+to(x—a))-(a—=x).
Since g is closed in B, Dg = 0 in B. This implies g(x) = g(a) for any = € B. O

(f)

Proof. First, we note ¢ is not well-defined in all of A, so part (d) can not be used to prove w is exact in
A. Assume w = df in A for some O-form f. Then d(f — ¢) = df —d¢p = w —w = 0 in B. By part (e),
f — ¢ is a constant in B. Since limy o ¢(1,y) = 0 and limyo ¢(1,y) = 27, f(1,y) has different limits when
y approaches 0 through positive and negative values. This is a contradiction since f is C' function defined
everywhere in A. O

6.
Proof. dn =1 (—=1)""'D; fidx; A dzy A - cdzg A ANdx, = Yoy Difidxy A+ Adxy,. So dn =0 if and
only if Y27, D; f; = 0. Since D f(z) = "muﬁcl;T;” , zz \ Difi(x) = f5. So dy = 0 if and only if m = n. O

7.

Proof. By linearity, it suffices to prove the theorem for w = fdxy, where I = (i1, - ,ip—1) is a k-
tuple from {1,---,n} in ascending order. Indeed, in this case, h(z) = d(fdxs)(z)((x;v1), -, (x;0)) =
> 1Df( x)dx; A der)((x;v1),- -, (@;0)). Let X = [vy---v]. For each j € {1,---,k}, let V; =
[vg -+ vg]. Then by Theorem 2.15 and Problem 4 of §28,

detX(i, il, s aik—l) = Z(—l)j_lvijdeth(il, ce aik—l)-
j=1

Therefore

h(z) = ZDf Ydet X (4,41, -+ ,ix—1)

S D et )

i=1 j=1

k
= Z(—l)jilDf(x) : vjdeth (i1, s aik—l)-
j=1

Meanwhile, g;(x) = w(z)((z;v1), -, (z505), -+, (x;v8)) = f(x)detY; (i1, - ,ik—1). So
Dg;(@) = Df(@)detYjir, - yix-1)

and consequently, h(x) = Z?Zl(—l)j’ngj(x) -v;. In particular, for k = 1, h(z) = Df(x) - v, which is a

directional derivative. O

31 Application to Vector and Scalar Fields

1.

Proof. (Proof of Theorem 31.1) It is straightforward to check that a; and §; are isomorphisms. Moreover,

doag(f) =df =3 ;| Difdr; and oy o grad(f) = a1 ((z; 211 Dif(x)e;)) = iy Dif(x)dx;. So doag =

a7y o grad.
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Also, do B 1(G) = d(X7_ (—1)' " Ygiday A+ - Adai A- - Ady) = S0 (—1) 2 Dygida; Aday A- - - Adz; A
o ANdxy = (37 Digi)dzy A+ Aday, and B, 0 div(G) = B, (3.1 Digi) = (37— Digi)dxy A+ -+ Aday. So
do ﬁnfl = ﬁn o div.

(Proof of Theorem 31.2) We only need to check d o oy = 3 o curl. Indeed, do oy (F) = d(Z?Zl fidz;) =
(D2 frdxa + D3 fidxs) Adxy + (D1 fadxy + D3 fadxs) Adag + (D fadwy + Do fadre) Adxs = (Do f3— D3 fa)dza A
dxs+ (Dgfl — D1f3)d$3 ANdxi+ (D1f2 — Dgfl)dxl /\d.]?g, and ﬁg OCUI‘I(F) = ﬁg((l‘; (D2f3 — D3f2)€1 + (D3f1 —
D1f3)€2 + (D1f2 — Dgfl)eg)) = (D2f3 — Dgfg)d:ﬁg A\ dJCg — (Dgfl — leg)d.i?l A d$3 + (D1f2 — Dgfl)dilil /\d[EQ.

So d o ay = (B3 o curl. O]
2.

Proof. an F = fidx1 + fodzs and 51 F = fidxy — fodxy. O
3. (a)

Proof. Let f be a scalar field in A and F(x) = (z;[fi(2), fo(x), f3(x)]) be a vector field in A. Define
wll; = fidxy + fodzs + f3drs and w% = fidxo Ndzxs + fodxs Adxy + fzdxy A dxs. Then it is straightforward
to check that dwk = w? 1p and dw? = (divF)dz; A dza A drs. So by the general principle d(dw) = 0, we

cur
have
_ _ 1 _ 2
0=d(df) =d (wgradf) = Yeurl gradys
and
0= d(dwk) = d <wguﬂ F) = (div curlF)dz; A dos A das.

These two equations imply that curl gradf = 0 and div curlF = 0. O
4. (a)

Proof. yo(aH +pG) =37, _;lahii(x)+Bgij(v)deiNdry = oy hij(w)dzi Adaj+B 2, gij(w)dz; Aday =
ave(H) 4+ 872(G). So v, is a linear mapping. It is also easy to see 7 is one-to-one and onto as the skew-
symmetry of H implies h;; = 0 and h;; + hj; = 0. O]

(b)

Proof. Suppose F is a vector field in A and H € S(A). We define twist : {vector fields in A} — S(A) by
twist(F);; = D;f; — D;f;, and spin : S(A) — {vector fields in A} by spin(H) = (z;(Dshes — D3hos +
Dshsa, —Dyhy3 + Dshiy — Dihss, Dyhya — Dahig + Dihoy, —Dshis + Dahig — D1hag)). O

5. (a)

Proof. Suppose w = >, a;dz; is a 1-form such that w(z)(z;v) = (f(z),v). Then Y. | a;(z)v

ol

S, fi(x)v;. Choose v = e;, we conclude a; = fi. Sow = a1 F.
(b)
Proof. Suppose w is an (n—1) form such that w(x)((z;v1), -+, (;0n-1)) = eV (g(z),v1, -+ ,Up—1). Assume

w has the representation Y ., a;dzy A+ Adx; A -+ Adzy,, then

w(z)((@;v1), -, (T vp-1)) = Zai(w)det[vl,m On—1](1, 5o )
— Z(—l)ifl[(—1)i’1ai(x)]det[v1, e ,Unfl](l,,“ o
i=1
= detla(x),v1, -, Up_1],
where a(x) = [ay(z), -, (=1)"ta;(z), -, (=1)""ta,(x)]T". Since

€V(g(x), Uy, avn—l) = det[g(x)vvla e 7vn—1]’
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we can conclude det[a(z), vy, - ,v,—1] = det[g(x), vy, -+ ,v,_1], Or equivalently,
det[a(:c) - g(x)vvla e fun—l} =0.

Since vy, - -+ ,v,—1 can be arbitrary, we must have g(z) = a(z), i.e. w= > (=1)"tgidzy A--- A dzi A+ N
dlL’n = ﬁnflG. O]

()

Proof. Suppose w = fdxiA---Adx, is an n-form such that w(x)((z;v1),- -, (z;0n)) = €-h(x)-V(v1, -+ ,0n).
This is equivalent to f(z)det[vy,- - ,v,] = h(x)det[vy, - ,v,]. So f =h and w = B, h. O

32 The Action of a Differentiable Map

1.

Proof. Let w, n and 6 be 0-forms. Then

(1) B (aw + bn) = aw o B+ by o B = aB*(w) + b3*(n).

@) 0) = - 0) =wo 005 =) 570) = 5°) A0
3

ca)w=wofoa=a*(wopf)=a*(f*w). O

dog N dag A das
= (Dyandzy + Daaydrs + Dsaidas) A (Diagdey + Deasdre + Dsasdrs)
A(Diasdxy + Dayasdxs + Dyasdxs)
= (DianDsasdxy A dxo + Diag Dsasgdzy A dxs + Doy Diagdazg A dey + Doy Dsasdza A das
+Dsay Dyasdxs A dxy + Dsay Daagdas A dxs) A (Dyasdx; + Daasdxs + Dsasdxs)
= Dsa1DsazDyasdrs A des A dry + Dyay DoasDiasdxs A deg A dxq + Diog DyasDoasdry A dxs A dxo
+Dszoy DyazDoasdrs A dxy A dxs + Dy DaasDsasdxy A dxs A des + Doy DiasDaasdrs A dry N dxs
= (DaanDsasDyias — Dsay DaasDias — Do DsagDoas + Dsay DyasDoas + Dy Daaig Dsas
—Doay DyaszDsas)dry A dxe A das

Dl()él D2a1 D30[1
= det |Dias Dsas Dsas| dry Adxo Adxs
D1a5 DQO&5 D3a5

= detDa(1,3,5)dx; A dxe A drs.

So Oé*(dy(173,5) = Oé*(dyl A dyg A dy5) = Oé*(dyl) A Oé*(dyg) A Oé*(dy5) = dOél N dOég N dOés = detaagia’:”md‘fl A
dxy A dxz. This confirms Theorem 32.2. O

3.

Proof. dw = —xdx A dy — 3dy A dz, a*(w) = z o a -y o aday + 2z o adas — y o adaz = vdv(udv + vdu) +
2(3u +v) - (2udu) — u?(3du + dv) = (uv? + 9u? + 4uv)du + (u*v — u?)dv. Therefore

a*(dw) = —zoaday Adas —3das A das
—uv(udv + vdu) A (2udu) — 2(2udu) A (3du + dv) — (2udu) A (3du + dv)
(2u3v — 6u)du A dv,
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and

da*w) =

(2ulvdv + dudv) A du + (4uPvdu — 2udu) A dv

= (—2u’v —du + 4uPv — 2u)du A dv

(2uv — 6u)du A dv.
So a*(dw) = d(a*w).
4.
Proof. Note a*y; = y; o a = a.
5.

Proof. o*(dyr) is an I-form in A, so we can write it as a*(dy) =

form the set {1,--- ,k}. Fix J = (j1, -+ ,Ji), we have
hy(x) = o (dyr)(@)((z;€j,),
= (dyn)(z)(o(xse5,), -
= (dyr)(z)((a(z )7 Dj, oz
= det[Dj,a(x),---,D;
8@1
= detaTJ( ).

Therefore o (dyr) = _ (det—) dxy.

6. (a)

Proof. We fix x € A and denote a(z) by y. Then G(y) = a.(F(x)) =
(Xj=1 Dieifi)(a™

z:gZ anD a;dr; = Z Xn:Djaigi o a)dx;.

“!(y)). Then g;(y) =

n
= Z gi o aday; =
=1

Therefore a*(a1G) = a1 F' if and only if

Da(z) - f(z) = (Da - f)(a

a"(01G) = a*(Y gudys)

i=1

ZD algloa—ZD OézZDkOész = [DjonDjas -

=1 =1

that is, Da(z)?

)1

Z[ J] hydx y, where J is an ascending [-tuple

(l‘ 6]1))

a.(z;e;))
- (a(@); Dja(x)))

(y; Da(z) - f(x)).
1(y)) and we have

Define ¢(y) =

j=1 i=1

--Djay) - Da- f,

" Da(z) - f(z) = f(z). So a*(anG) = an F if and only if Da(x) is an orthogonal matrix for

each x. O]
(b)
Proof. Bp1F =31 (=17 fidey A A d/ga A -+ Adx, and
n . —
a*(Bp-1G) = a*(Z(—l)l_lgidyl/\---/\dyi/\ < Adyn)
i=1
= Y (=D MNgioa)a*(dys A Adyi A+ Adyy)
i=1
= i( 1)“1(anDazf-) > d (200 G O) AT A Ada |
i—1 j=1 I / 1 X1, s Lhes . ,Z‘n)

23



So a*(Bp-1F) = Bn_1F if and only if for any k € {1,--- ,n},

n ~
. Aan, @y )
— —1k+ZD‘¢'dt ) 7/3 s Bn
fk 1]2221( ) O f] € a(x17__.’xk’_._7$n)
n n _ Aag, - @y, an)
= Y (=) Dja;det s
Zf]z( ) 3% ea(x1,~--,mk,--~,xn)
]:1 =1
= Z fi0kjdet Dax
Jj=1
= frdetDa
Since F' can be arbitrary, a*(8,-1F) = Bn—1F if and only if detDa = 1. O
(c)
Proof. o*(Bpk) = a*(kdyy A -+ Ndyp) = koa-a*(dy1 A--- Ady,) = h-detDa - dzy A -+ A dx, and
Brh = hdxy A -+ Adx,. So a*(B,k) = Bnh for all h if and only if detDa = 1. O

7.

Proof. If « is an orientation-preserving isometry of R™, Exercise 6 implies a*(a1G) = an F, a*(8,-1G) =
Bn_1F, and a*(B,k) = Bph, where F, G, h and k are as defined in Exercise 6. Fix x € A and let y = a(x).
We need to show
(1) a.(divF)(y) = div(a.(F))(y). Indeed, div(a.(F))(y) = divG(y), and
Q. (divF)(y) = divF(z) =6, o f(divE)(z) = B, 0 d(Bp—1F)(x) = B, 0 d(a (By—1G))(x)
= B loa*od(Bn1G)(z) = B, oa* o B,(divG)(x).

For any function g € C*(B),
Brtoa*oBulg) =B, oa*(gdys A+ Ndyn) = B, (goa-detDa-dxy A--- Adxy,) = goa.
So
a.(divF)(y) = ;' o a* 0 B, (divG)(z) = divG(a(z)) = divG(y) = div(a.(F))(y).
(2) a.(gradh) = grad o &, (h). Indeed,

Dlh(.’t)

a.(gradh)(y) = a.(gradh o a™*(y)) = au(gradh(z)) = (y; Da(z) - ) = (y; Da(z) - (Dh(x))™),

D, h(x)
and

grad o @, (h)(y) = grad(hoa ') (y)
(y; [D(hoa™)(y)]")
(y; [Dh(a™ (y)) - Da™ (y)]"")
= (y;[Dh(z) - (D)) ~]"").

Since Da is orthogonal, we have

grad o . (h)(y) = (y; [Dh() - (Da(2))"]"") = (y; Do(x) - (Dh(x))") = & (gradh)(y).
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(3) For n = 3, a.(cwlF) = curl(a.F). Indeed, curl(a.F')(y) = curlG(y), and
Ax(curlF)(y) = ax(curlF (o (y)))
= By " 0 BaocurlF(x))
(8" odoaiF(x))
(
(
(

Il
Q2

*

I
Q

*

Bytodoa*oaG(x))
= a(Byloa*odoaG(x))
. (B3 o a* o By 0 curlG(x))

Let H be a vector field in B, we show au (35 " 0 a* o Bo(H)(x)) = H(a(z)) = H(y). Indeed,

a(By " 0o o By(H)())
= a(Bylo a*(Z(fl)Flhidyl Ao Adyi A~ Adyy))
i=1
= a.ofy! i(—l)”‘lhioaideta(al""’?i""’O‘")dxlA--~/\d/:c\-A---Adxn
] j:1 a($1,... 7'Tj7”. 71‘71) J

~—

= a*0551 Z(Z(_l)ilhioa.deta(ah“. Qi 7an)>d$1/\~~-/\d/$?/\~../\dmn

] 6(1‘1,"',.1:]‘7"',1‘71

n n o Aag, @y 5 an)

= " -1 1+Jhi . det ) ) Aa ) )
* ;(;( ) e 8(@‘1,-~-,xj,~-~,xn) K

Using the definition of a, and the fact that detDa = 1, we have

n n o o e @y
Oy Z (Z(—l)lﬂhioa.deta((ii’“' 7;’” @ )> €;
) s Lj,

i=1 )

S (=)t hioa- det &l iy am)

i=1 o(x1,+ ,an)

= Da(x)- |0 1(—1)i+jh¢ o - det2lon . Gir an)

i= (@1, T5 5 @)

S (—=1)"*"hioa- det 2l ,@i, an)

i=1 (@1, ,2n)

So the k-th component of the above column vector is

n " o Aag, @y )
D. -1 er]hi . det ) ,Aa )
j; Jak;( ) o ¢ 8(.1'1,"',.’13j,"',l‘n)

i n o Aag, @y 5 an)
= h; —“1) D.ardet ’ i ’
; Oaj;l( ) JOREe 8($1,---,xj,--~,mn)

= hgoadetDa

hy o a.
Thus, we have proved a, (85 ' o a* o fo(H)(z)) = H(y). Replace H with curlG, we have

a (curlF)(y) = curlG(y) = curl(a. F)(y).

25



33 Integrating Forms over Parametrized-Manifolds

1.
P d d d dxs) = d 01 2 2+ 1)d L0y 2
r00f. fYa(IQ zy A dxs + xizsdry Adeg) = [, vdet ou 9 + u(u? + v + 1)det S = [, —2uv +
2uv(u? + 0% +1) =1. O
2.
Proof.
/ x1dry A drg N dxs + 2x0x3dey A des N dxs
Yo
= / o (—xydxy Ades A dxy + 2x9x3dey A dag A dxs)
A
0 0 1 00
= / —sdet 0 0 1 + 2utdet |0 1 O| | dsAdundt
A 0 4(2u—1t) 2(t—2u) 00 1
= 4s(2u —t) + 2ut
A
= 6.
O
3. (a)
Proof.
1
/ W((E1d$2/\d$3 _xdel /\dxg +£L’3d(L’1 /\dl’g)
1 8(.’[72 .’L‘3> 8(3:1 .’173) 2 2\1/2 8(1‘1 .’172)
= det——2"2 _ pdet—— 1 —u? — )Y 2det— 2
o M e~ e g+ (1 =) e
0 1 1 0
= / udet [ u o ] — vdet [_ u o + (1 — u? — v?)2det {(1) (1)]
1-u?—v? 1—u2—v2 1-u?—v? V1i—u2—v2
v? / 2 _ .2
= =+ +vV1-us—v
/ V1= V1—u2— 2
/A 1— u2 —v2
= 0
Apply change-of-variable, {u TC.OS (0<r<1,0<06<2m), we have
v =7rsinf
1 - 1 dot cos) —rsinf| 9
AVI—uZ =02 Sz VI—12 sinf  rcosf |
O
(b)
Proof. —27 O
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Proof. Suppose n has the representation n = fdx; A dxo A - -+ A dxg, where dz; is the standard elementary
1-form depending on the standard basis eq, - -, e; in R*. Let ay,---,a; be another basis for R¥ and define
A=lay, - ,ax]. Then

n(@)(z;a1), -+, (z;a)) = f(z)detA.

If the frame (ag,- - ,ax) is orthonormal and right-handed, detA = 1. We consequently have

AHZAfZ/QEGAn(w)((x;al),"' (&5 ax)).

34 Orientable Manifolds

1.

Proof. Let a: Uy, = V,, and 8 : Ug — V3 be two coordinate patches and suppose W.V, N Vg is non-empty.
Vp € W, denote by z and y the points in a~1(W) and B3~1(W) such that a(x) = p = B(y), respectively.
Then

Da~'o B(y) = Da”™'(p) - DB(y) = [Da(x)] ™" - DB(y).

So detDa~!o B(y) = [detDa(z)] " *detDB(y) > 0. Since p is arbitrarily chosen, we conclude o and 3 overlap
positively. O

2.

Proof. Let o : Uy, — V, and 8 : Ug — V3 be two coordinate patches and suppose W := V,, NV} is non-empty.
Vp € W, denote by z and y the points in a~1(W) and B3~1(W) such that a(x) = p = B(y), respectively.
Then
D(aor)™to(Bor)(rt(y) = D(aor) (p)-D(Bor)(r (y))
D(r~toa™)(p)- D(Bor)(r(y))
Dr~'(z)Da~ ! (p) - DA(y) - Dr(r~"(y)).
Note r~! =1 and detDr = detDr~! = —1, we have

det(D(aor) ™ o (Bor)(r~(y))) = [detDa(x)]tdet DB (y).

So if « and S overlap positively, so do awor and o r. O
3.
Proof. Denote by n the unit normal field corresponding to the orientation of M. Then [n,T] is right-handed,
ie. det[n,T] > 0. O
4.
—2m sin(2mu) 0 ny
Proof. g—z = | 2w cos(2mu) |, g—ﬁ‘ = [0]. We need to find n = |nz |, such that det [n, g—g, g—‘;‘] >0, |n] =1,
0 1 ns
andn L span{‘g—z7 g—z‘} Indeed, (n, g—g> = 0 implies ng = 0, (n, %) = 0 implies —n4 sin(27u) +ns cos(2mu) =
ny  —2wsin(27u) 0
0. Combined with the condition n?+n3+n3 = n3+n3 = land det [ny 2mcos(27u) 0| = (ny cos(2mu)+
0 0 1

= 2
ng sin(2mu)) - 2w > 0, we can solve for ny and no: {nl cos(2mu) . So the unit normal field corresponding

ne = sin(27u)
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cos(2mu) 1
to this orientation of C'is given by n = |[sin(27u) |. In particular, for u = 0, «(0,v) = (1,0,v) and n = |0].
0 0
So n points outwards.
By Example 5, the orientation of {(x,v,2) : 2% + y? = 1,2 = 0} is counter-clockwise and the orientation
of {(x,y,2) : 2% + y?> = 1,2 = 0} is clockwise. O

5.

Proof. We can regard M as a 2-manifold in R? and apply Example 5. The unit normal vector of M as
a 2-manifold is perpendicular to the plane where M lies on and points towards us. Example 5 then gives
the unit tangent vector field corresponding to the induced orientation of M. Denote by n the unit normal
field corresponding to M. If « is a coordinate patch of M, [n, 37“1] is right-handed. Since [5)7“1, 5’)7“2] is
right-handed and g—;‘; points into M, n points outwards from M.

Alternatively, we can apply Lemma 38.7. O

6. (a)
Proof. The meaning of “well-defined” is that if x is covered by more than one coordinate patch of the same
coordinate system, the definition of A(z) is unchanged. More precisely, assume z is both covered by a;,
and «,, as well as 3;, and G, detD(ozi:1 o ﬂjl)(ﬁil(x)) and detD(ozi;1 o ﬁh)(ﬁjgl(x)) have the same sign.
Indeed,
detD(az" o 6;,)(8, (x))

= detD(ai_ll O iy oai_zl Oﬂjz O/Bj_zl 06]1)(5]_11(1‘))

= detD(a;;! o i) (g (2)) - detD(ag' o B;,) (8, (x) - detD(B1,! o B;,) (85, (x))-
Since detD(a;loaiz) > 0 and detD(ngloﬁjl) > 0, we can conclude detD(a;loﬂjl)(ﬁil(x)) and detD(o@lo
5j2)(ﬂj;1(x)) have the same sign.

(b)

Proof. Vx,y € M. When x and y are sufficiently close, they can be covered by the same coordinate patch
a; and 3;. Since detDa;1 o f3; does not change sign in the place where «; and 3; overlap (recall a;l o f; is
a diffeomorphism from an open subset of R* to an open subset of R¥), we conclude \ is a constant, in the
place where «; and 3; overlap. In particular, A is continuous. O

()

Proof. Since X is continuous and A is either 1 or -1, by the connectedness of M, A must be a constant. More
precisely, as the proof of part (b) has shown, {x € M : A\(z) = 1} and {x € M : A(z) = —1} are both open

sets. Since M is connected, exactly one of them is empty. O
(d)

Proof. This is straightforward from part (a)-(c). O

7.

Proof. By Example 4, the unit normal vector corresponding to the induced orientation of M points outwards

from M. This is a special case of Lemma 38.7. O

8.

28



Proof. We consider a general problem similar to that of Example 4: Let M be an n-manifold in R™, oriented
naturally, what is the induced orientation of OM ?
Suppose h : U — V is a coordinate patch on M belonging to the natural orientation of M, about the
point p of M. Then the map
ho b(x) = h(xlv 5 Tn—1, O)

gives the restricted coordinate patch on OM about p. The normal field N = (p ;T) to M corresponding to
the induced orientation satisfies the condition that the frame

1y, 200D )

is right-handed. Since Dh is right-handed, (—1)"T and (—1)"~! 2% 9h 1ie on the same side of the tangent plane

of M at p. Since 7 *- h points into M, T points outwards from M Thus, the induced orientation of OM is
characterized by the ‘hormal vector field to M pointing outwards from M. This is essentially Lemma 38.7.
To determine whether or not a coordinate patch on M belongs to the induced orientation of M, we
suppose « is a coordinate patch on M about p. Define A(p) = D(h™! o a)(a~!(p)). Then « belongs to the
induced orientation if and only if sgn(detA(p)) = (—1)". Since Da(a~t(p)) = Dh((h=*(p)) - A(p), we have

-1 -1
(-1 T(), Data™ )] = |(-1r7(p), PG PN O

Therefore, a belongs to the induced orientation if and only if [T'(p), Da(a~t(p))] is right-handed.
Back to our particular problem, the unit normal vector to S~ ! at p is ﬁ. So a belongs to the orientation

of S*~1 if and only if [p, Da(a™*(p))] is right-handed. If al(u) = p, we have

U 1 0 0 0

Uy 0 1 0 0
p,Daa_lp _
[ (@™ (p))] . 0 0 0 )

L—fuf® = R S
\/1—"““2 \/1—Hu||2 \/1—““\\2 \/1—”U||2

Plain calculation yields det[p, Da(a™t(p))] = (—=1)""1/{/1 — Ju|2. So a belongs to the orientation of S™~1 if
and only if n is odd. Similarly, we can show 3 belongs to the orientation of S*~! if and only if n is even. [

35 Integrating Forms over Oriented Manifolds

Notes. We view Theorem 17.1 (Substitution rule) in the light of integration of a form over an oriented
manifold. The theorem states that, under certain conditions, fg((a y f = f(a »(f ©9)lg'|. Throughout

this note, we assume a < b. We also assume that when dx or dy appears in the integration formula, the
formula means integration of a differential form over a manifold; when dzx or dy is missing, the formula means
Riemann integration over a domain.

First, as a general principle, f b f(x)dx is regarded as the integration of the 1-form f(x )dx over the
naturally oriented manifold (a,b), and is therefore equal to f( b f by definition. Similarly, fb x)dz is
regarded as the integration of f(z)dx over the manifold (a,b) whose orientation is reverse to the natural

orientation, and is therefore equal to — [ b f(x)dz = — f (ap) |-
Second, if ¢’ > 0, then g(a) < ¢(b) and fg(a) y)dy is the integration of the 1-form f( )dy over
the naturally oriented manifold (g(a),g(b)) with g a coordinate patch. So fg((a o/ = f f( )y =

* (b
Siawy 9 W)dy) = [, Fl9(@))g (x)dx = [, f(9)g"- If ¢ <0, then g(a) > g(b) and [ 9(a)) y)dy is the
integration of the 1-form f(y)dy over the manifold (g(b), g(a)) whose orientatlon is reverse to the natural
. . b *
orientation. So [ f =~ [7) f(y)dy = f(a ) T (FW)dy) = = [ F9(@)g' (@)dz = [, ) [(9)(~9)-

Combined, we can conclude f (b)) f fa b) o g)ld’|-
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3. (a)

Proof. By Exercise 8 of §34, a and 3 always belong to different orientations of S"~!. By Exercise 6 of §34,
a and 3 belong to opposite orientations of S™~1.

(b)

Proof. Assume *n = —a*n, then by Theorem 35.2 and part (a)

/ nz/ 77+/ n=/a*n+(—1)/ﬁ*n=2/a*n-
Sn—1 Sr—1n{zeR™:z, >0} Sr—1n{zeR™:z, <0} A A A

Now we show (*n = —a*n. Indeed, using our calculation in Exercise 8 of §34, we have
1 0 0 0 i
0 1 0 0
Da(u) — ... ... ... e
0 0 0 1
—U1 —Ug —Un—2 —Un-—1
L Vi=lul? y/1-]ul? Vi-lul? /1=]ul?
and
ro1 0 0 0 1
0 1 0 0
D/B(u) — e e e e
0 0 0 1
Ul U Un—2 Un—1
LV1=lul? y/1=]ul? Viclul? /1=[u]? J

So for any x € A,

S

a'n(z) =

_1)n—1—i

—1

- —{ m(—l)”*lﬂ'%w+<—1>”*1<—1>\/1— ||u|2}du1 A A dug
i=1 —u

= —Z(—l)i_lfi o B(u)detDB(1, -+ yiy -+ ,n)dug A+ A dup—1

()

~

1= ful

Proof. By our calculation in part (b), we have

e
A

= D

/A 2(—1)i_1ui(—1)n_i

—1
Z?:l ulz

e _|_
AN/ 1= ul?

1
Iy
A1 = ul?

30

Usg

V1= Jul?

V1= ul?

(=) fioa(u)detDa(l, - ,i,-- ,n)duy A -+ A diiy_q

+ (=D)L = Jul?

_7%2 + (=D /1 - |u||2} duy A+ ANdup—q
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36 A Geometric Interpretation of Forms and Integrals

1.
Proof. Define b; = [D(a™! o B)(y)]"ta; = D(B~! o a)(x)a;. Then

Bu(y; bi) (p; DB(y)bi)
= (p; DB(Y)[D(a™" 0 B)(y)) 'ai)
= (p; DB(y)D(B~" o a)(x)ay)
= (p;Da(z)a;)
= a.(z;a,)

Moreover, [by, -+ ,bx] = D(87 o a)(z)[a1, - ,ax]. Since detD(B~ 1 oa)(x) >0, [by,- - ,bg] is right-handed
if and only if [ag, - ,ax] is right-handed. O
37 The Generalized Stokes’ Theorem

2.

Proof. Assume 1 = dw for some form. Since S™~! = ), Stokes” Theorem implies [g, 17 = [gn 1 dw =
fasnfl w = 0. Contradiction.

3.
Proof. Apply Stokes” Theorem to w = Pdx + Qdy. O
4. (a)
1 0
Proof. Da(u,v) = |— \/172;;%2 - 17?:;77]2 . By Lemma 38.3, the normal vector n corresponding to the
0 1

orientation of M satisfies n = ﬁ, where

2u

detDa(u,v)(2,3) RV iy
¢ = |—detDa(u,v)(1,3)| = -1
detDa(u, 'U)(].?2) —\/%
Plain calculation shows |c|| = 1/%, S0
—___2u
V1+3u2+3v?
no | e
VIR0
T V13uP 4302
0
In particular, at the point «(0,0) = (0,2,0), n = |—1|, which points inwards into {(x1,x2,x3) : 4(z1)* +
0
(2)?+4(23)? < 4,29 > 0}. By Example 5 of §34, the tangent vector corresponding to the induced orientation
of OM is easy to determine. O

(b)
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Proof. According to the result of part (a), we can choose the following coordinate patch which belongs to
the induced orientation of OM: B(0) = (cosf,0,sinf) (0 < #27). By Theorem 35.2, we have

/ Todxy + 3x1drs = / 3cosf-cosf = 3.
oM

[0,27)
O
(c)
Proof. dw = —dxy N\ dxs + 3dxy A dxs. So
dw = / —dx1 AN drs + 3dry A drs
M M
= / —detDa(u,v)(1,2) + 3detDa(u, v)(1, 3)
{(u,v):u2+v2<1}
2
ol
{(u,v):u2+v2<1} 1—wu?—0?
/ [ 2rsin 6 N 3}
= r
{(6,r):0<r<1,0<0<27} LV 1 —12
= 3.
O
5. (a)
Proof. By Stokes” Theorem, we have
R A L DU IS RS
dw = w= w+ w= w— w=-—--.
M oM 52(d) —52(c) 52(d) 52(c) d ¢
O
(b)
Proof. If dw = 0, we conclude from part (a) that b = 0. This implies fSQ(T) w = a. To be continued ... O
(c)
Proof. If w = dn, by part (b) we conclude b = 0. Moreover, Stokes’ Theorem implies a = fs2(r)w =
fSQ(r) dn = 0. O

6.

Proof. [,,d(wAn) = [y, wAn=0. Since dw An) = dw An+ (—1)*w A dn, we conclude [, w Ady =
(=DF+ [, dwAn. Soa=(—1)". O
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38 Applications to Vector Analysis

1.
Proof. Let M = {x € R3 : ¢ < |z| < d} oriented with the natural orientation. By the divergence theorem,
/ (@dive)dv = [ (G Ny,
M oM

where N is the unit normal vector field to OM that points outwards from M. For the coordinate patch for
M:

x1 = rsinf cos ¢
o =rsinfsing (¢c<r<d,0<0<m0<¢<2m)

x3 =T1cosb,
we have

sin 6 cos r cos 6 cos —rsin 6 sin
a(l’17$2,$3) ¢ (b ¢

det 7 =det |sinfsing rcosfsing rsinfcosg | =r2sinb.
(r,0,¢) cos @ —rsinf 0
S0 [y, (divG)aV = [ |det2Gg2sl| — 0. Meanwhile [,/ (G, N)AV = [ga(g)(Gy NV = [ga0 (G, )V .
So we conclude fSZ(d)<G7 N,)dV = fSZ(c)<G7 N,)dV. O
2. (a)

Proof. We let M3 = B™(¢). Then for ¢ small enough, M3 is contained by both My — OM; and My — OMs.
Applying the divergence theorem, we have (i = 1, 2)

0:/ (divG)dV:/ <G,Ni)dV7/ (G, N3)dV,
le:[ntMg OM; OM3

where N3 is the unit outward normal vector field to dMs. This shows that regardless i = 1 or i = 2,
Jonr, (G5 Ni)dV is a constant [, (G, N3)dV. O

(b)

Proof. We have shown that if the origin is contained in M — @M, the integral f8M<G, N)dV is a constant.
If the origin is not contained in M — M, by the compactness of M, we conclude the origin is in the exterior
of M. Applying the divergence theorem implies [, o (G, N)dV = 0. So this integral has only two possible
values. 0

3.

Proof. Four possible values. Apply the divergence theorem (like in Exercise 3) and carry out the computation
in the following four cases: 1) both p and ¢ are contained by M — OM; 2) p is contained by M — OM but ¢

is not; 3) ¢ is contained by M — dM but p is not; 4) neither p nor ¢ is contained by M — OM. O
4.
Proof. Follow the hint and apply Lemma 38.5. O
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39 The Poincaré Lemma
2. (a)

Proof. Let w € QF(B) with dw = 0. Then g*w € QF(A) and d(g*w) = g*(dw) = 0. Since A is homologically
trivial in dimension k, there exists w; € QF(A) such that dw; = g*w. Then wy = (g7 1)*(w1) € Q*(B) and
dwy = d(g71)*(w1) = (g7 )" (dw1) = (971)*g*w = (g0 g7 ')*w = w. Since w is arbitrary, we conclude B is
homologically trivial in dimension k. O

(b)

Proof. Let A = [3,1] x [0,7] and B = {(z,y) : 1 < \/22+y? < 1,2,y > 0}. Define g : A — B as
g(r,0) = (rcosf,rsinf). By the Poincaré lemma, A is homologically trivial in every dimension. By part (a)
of this exercise problem, B is homologically trivial in every dimension. But B is clearly not star-convex. [

3.

Proof. Let p € A and define X = {z € A : x can be joined by a broken-line path in A}. Since R™ is locally
convex, it is easy to see X is an open subset of A.

(Sufficiency) Assume A is connected. Then X = A. For any closed 0-form f, Vo € A, denote by v a
broken-line path that joins z and p. We have by virtue of Newton-Leibnitz formula 0 = f7 df = f(z) — f(p).
So f is a constant, i.e. an exact O-form, on A. Hence A is homologically trivial in dimension 0.

(Necessity) Assume A is not connected. Then A can be decomposed into the joint union of at least two
open subsets, say, A; and As. Define

= 1, on Ay
N 0, on AQ.
Then f is a closed O-form, but not exact. So A is not homologically trivial in dimension 0. O

4.

Proof. Let n = Z[I] frdxy + Z[J] gydx g A dt, where I denotes an ascending (k + 1)-tuple and J denotes an
ascending k-tuple, both from the set {1,--- ,n}. Then Py = Z[J] gsdzr; and

(P)(@)((w;v1), -+, (w500)) = Y (=1)*(Lg)det[vr -~ vl
[J]

On the other hand,

So

n(y)((y;uﬂ)v M) (y§wk)7 (y; en+1)>

= > frdar ((y; ﬁ)l]) (¥ [vﬂ)’(y; {Onlﬂ]o

]
v %;glde A dt <(y; [ﬂ )seee s (s ﬁ)k] ) [Onlﬂ ))

= 0+Zg]d6t['l}1“"l}k]]
[J]

= Zgjdet[vl vk g
(7]
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Therefore

(—1)* / @), 5wk, @ ens)

=0
t=1
= (_1)kz/ ) gydet[vy - vg] s
] 7=

= ) (—DF(Lgs)detfvy - - vg]s
[7]

= (Pn)@)((z501), -+, (z;v8))-

40 The deRham Groups of Punctured Euclidean Space
1. (a)

Proof. This is already proved on page 334 of the book, esp. in the last paragraph. O
(b)

Proof. To see T is well-defined, suppose v+W = v/+W. Then v—v' € W and T(v) =T (v') = T(v—v') € W’
by the linearity of 7' and the fact that T carries W into W’. Therefore T'(v) + W’ = T'(v') + W', which

shows 7 is well-defined. The linearity of T follows easily from that of 7' O

2.

Proof. Vv € V, we can uniquely write v as v = > | ¢;a; for some coefficients ¢y, - - - , ¢,. By the fact that a4,

-, ar € W, we conclude v+ W = Z?:kﬂ ci(a; +W). So the cosets ag1+W, -+, a, + W spans V/W. To

see ag4+1+W, -+, a,+W are linearly independent, let us assume Z?:kﬂ ci(a;+W) = 0 for some coefficients

Ck+1,""* Cn. Then E?:,Hl cia; € W and there exist dy, - - - , dj, such that Z?:kﬂ cia; = Z?Zl dja;. By the

linear independence of a1, --- ,a,, we conclude cxy1 = --- = ¢, = 0, i.e. the cosets agr1 +W, - -, ap + W

are linearly independent. O

4. (a)

Proof. dimH*(U) = dimH*(V) = 0, for all i. O
(b)

Proof. dimH*(U) = dimH*(V) = 0, for all i. O
(c)

Proof. dimH°(U) = dimH"(V) = 0. O

5.

Proof. Step 1. We prove the theorem for n = 1. Without loss of generality, we assume p < ¢q. Let
A=TR!—p—q; write A = AgU Ay U Ay, where Ag = (—o0,p), A1 = (p, q), and Ay = (q,0). If w is a closed
k-form in A, with k& > 0, then w|Ag, w|4; and w|As are closed. Since Ag, A;, Ay are all star-convex, there
are k — 1 forms ng, 1 and 12 on Ay, A; and A,, respectively, such that dn; = w|4; for ¢ = 0,1,2. Define
n=mn; on A;, i =0,1,2. Then n is well-defined and of class C*°, and dn = w.

Now let fy be the O-form in A defined by setting fo(x) = 0 for x € A1 U Ay and fo(z) = 1 for x € Ag;
let f; be the O-form in A defined by setting fi(z) = 0 for z € Ag U Ag and fi(z) = 1 for x € A;. Then f
and f; are closed forms, and they are not exact. We show the cosets {fo} and {f1} form a basis for H°(A).
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Given a closed 0-form f in A, the forms f|Ag, f|A41, and f|As are closed and hence exact. Then there are
constants cg, c¢1, and ¢p such that f|A; =¢;, i =0,1,2. It follows that

f(x) = (co — e2) fo(w) + (c1 — e2) f1(x) + 2

for v € A. Then {f} = (co — c2){fo} + (c1 — c2){f1}, as desired.

Step 2. Similar to the proof of Theorem 40.4, step 2, we can show the following: if B is open in R™, then
B x R is open in R"*!, and for all k, dimH*(B) = dimH*(B x R).

Step 3. Let n > 1. We assume the theorem true for n and prove it for n+ 1. We first prove the following

Lemma 40.1. R*"t! — § x H' and R"t! — § x L' are homologically trivial.

P?”OOf. Let U1 = RR—H —{p} XHl, V1 = R"‘H—{q} XHl, A1 = U1 ﬂVl = Rn+l—SXH1, and X1 = U1 UV1 =
R"*1. Since U; and V; are star-convex, U; and V; are homologically trivial in all dimensions. By Theorem
40.3, for k > 0, H*(A;) = H*1(X;) = HFFY(R 1) = 0. So R — § x H! is homologically trivial in all
dimensions. Similarly, R"*! — § x LL! is homologically trivial in all dimensions. O

Now, we define U = R"*! — S x H!, V = R*""! — S xL!,and A = U NV = R""! — § x R.. Then
X =R —p—qg=UUV. We have shown U and V are homologically trivial. It follows from Theorem
40.3 that H°(X) is trivial, and that

dim H**1(X) = dim H*(A) for k > 0.

Now Step 2 tells us that H*(A) has the same dimension as the deRham group of R” deleting two points, and
the induction hypothesis implies that the latter has dimension 0 if k£ # n — 1, and dimension 2 if £k =n — 1.
The theorem follows. O

6.

Proof. The theorem of Exercise 5 can be restated in terms of forms as follows: Let A = R™ — p — ¢ with
n > 1.

(a) If k #n — 1, then every closed k-form on A is exact on A.

(b) There are two closed (n — 1) forms, n; and 72, such that 1y, 12, and n; — 72 are not exact. And if n is
any closed (n—1) form on A, then there exist unique scalars ¢; and ¢o such that n—c1m; — cons is exact. O

41 Differentiable Manifolds and Riemannian Manifolds
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